90 research outputs found

    IFNγ protects motor neurons from oxidative stress via enhanced global protein synthesis in FUS-associated amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis type 6 (ALS6) is a familial subtype of ALS linked to Fused in Sarcoma (FUS) gene mutation. FUS mutations lead to decreased global protein synthesis, but the mechanism that drives this has not been established. Here, we used ALS6 patient-derived induced pluripotent stem cells (hIPSCs) to study the effect of the ALS6 FUSR521H mutation on the translation machinery in motor neurons (MNs). We find, in agreement with findings of others, that protein synthesis is decreased in FUSR521H MNs. Furthermore, FUSR521H MNs are more sensitive to oxidative stress and display reduced expression of TGF-β and mTORC gene pathways when stressed. Finally, we show that IFNγ treatment reduces apoptosis of FUSR521H MNs exposed to oxidative stress and partially restores the translation rates in FUSR521H MNs. Overall, these findings suggest that a functional IFNγ response is important for FUS-mediated protein synthesis, possibly by FUS nuclear translocation in ALS6.</p

    Dual Effects of Liquiritigenin on the Proliferation of Bone Cells: Promotion of Osteoblast Differentiation and Inhibition of Osteoclast Differentiation

    Get PDF
    Bone is constantly controlled by a balance between osteoblastic bone formation and osteoclastic bone resorption. Liquiritigenin is a plant-derived flavonoid and has various pharmacological effects, such as antioxidative, antitumor, and antiinflammatory effects. Here, we show that liquiritigenin has dual effects on the proliferation of bone cells, regarding the promotion of osteoblast differentiation and the inhibition of osteoclast differentiation. Liquiritigenin-treated murine osteoblastic MC3T3-E1 cells showed an increased alkaline phosphatase activity and enhanced phosphorylation of Smad1/5 compared with untreated cells. Moreover, liquiritigenin inhibited osteoclast differentiation, its bone-resorption activity through slightly decreased the phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and inhibitor of nuclear factor kappa Bα; however, the phosphorylation of Akt and p38 slightly increased in bone marrow-derived osteoclasts. The expression levels of the osteoclast marker proteins nuclear factor of activated T-cell cytoplasmic-1, Src, and cathepsin K diminished. These results suggest that liquiritigenin may be useful as a therapeutic and/or preventive agent for osteoporosis or inflammatory bone diseases

    Coronary Artery Aneurysms in Kawasaki Disease: Risk Factors for Progressive Disease and Adverse Cardiac Events in the US Population

    Get PDF
    Background: The natural history of coronary artery aneurysms (CAA) after intravenous immunoglobulin (IVIG) treatment in the United States is not well described. We describe the natural history of CAA in US Kawasaki disease (KD) patients and identify factors associated with major adverse cardiac events (MACE) and CAA regression. Methods and Results: We evaluated all KD patients with CAA at 2 centers from 1979 to 2014. Factors associated with CAA regression, maximum CA z‐score over time (zMax), and MACE were analyzed. We performed a matched analysis of treatment effect on likelihood of CAA regression. Of 2860 KD patients, 500 (17%) had CAA, including 90 with CAA z‐score >10. Most (91%) received IVIG within 10 days of illness, 32% received >1 IVIG, and 27% received adjunctive anti‐inflammatory medications. CAA regression occurred in 75%. Lack of CAA regression and higher CAA zMax were associated with earlier era, larger CAA z‐score at diagnosis, and bilateral CAA in univariate and multivariable analyses. MACE occurred in 24 (5%) patients and was associated with higher CAA z‐score at diagnosis and lack of IVIG treatment. In a subset of patients (n=132) matched by age at KD and baseline CAA z‐score, those receiving IVIG plus adjunctive medication had a CAA regression rate of 91% compared with 68% for the 3 other groups (IVIG alone, IVIG ≥2 doses, or IVIG ≥2 doses plus adjunctive medication). Conclusions: CAA regression occurred in 75% of patients. CAA z‐score at diagnosis was highly predictive of outcomes, which may be improved by early IVIG treatment and adjunctive therapies

    Mild Electrical Stimulation with Heat Shock Ameliorates Insulin Resistance via Enhanced Insulin Signaling

    Get PDF
    Low-intensity electrical current (or mild electrical stimulation; MES) influences signal transduction and activates phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Because insulin resistance is characterized by a marked reduction in insulin-stimulated PI3K-mediated activation of Akt, we asked whether MES could increase Akt phosphorylation and ameliorate insulin resistance. In addition, it was also previously reported that heat shock protein 72 (Hsp72) alleviates hyperglycemia. Thus, we applied MES in combination with heat shock (HS) to in vitro and in vivo models of insulin resistance. Here we show that 10-min treatment with MES at 5 V (0.1 ms pulse duration) together with HS at 42°C increased the phosphorylation of insulin signaling molecules such as insulin receptor substrate (IRS) and Akt in HepG2 cells maintained in high-glucose medium. MES (12 V)+mild HS treatment of high fat-fed mice also increased the phosphorylation of insulin receptor β subunit (IRβ) and Akt in mice liver. In high fat-fed mice and db/db mice, MES+HS treatment for 10 min applied twice a week for 12–15 weeks significantly decreased fasting blood glucose and insulin levels and improved insulin sensitivity. The treated mice showed significantly lower weight of visceral and subcutaneous fat, a markedly improved fatty liver and decreased size of adipocytes. Our findings indicated that the combination of MES and HS alleviated insulin resistance and improved fat metabolism in diabetes mouse models, in part, by enhancing the insulin signaling pathway

    Acetic Acid Treatment Enhances Drought Avoidance in Cassava (Manihot esculenta Crantz)

    Get PDF
    The external application of acetic acid has recently been reported to enhance survival of drought in plants such as Arabidopsis, rapeseed, maize, rice, and wheat, but the effects of acetic acid application on increased drought tolerance in woody plants such as a tropical crop “cassava” remain elusive. A molecular understanding of acetic acid-induced drought avoidance in cassava will contribute to the development of technology that can be used to enhance drought tolerance, without resorting to transgenic technology or advancements in cassava cultivation. In the present study, morphological, physiological, and molecular responses to drought were analyzed in cassava after treatment with acetic acid. Results indicated that the acetic acid-treated cassava plants had a higher level of drought avoidance than water-treated, control plants. Specifically, higher leaf relative water content, and chlorophyll and carotenoid levels were observed as soils dried out during the drought treatment. Leaf temperatures in acetic acid-treated cassava plants were higher relative to leaves on plants pretreated with water and an increase of ABA content was observed in leaves of acetic acid-treated plants, suggesting that stomatal conductance and the transpiration rate in leaves of acetic acid-treated plants decreased to maintain relative water contents and to avoid drought. Transcriptome analysis revealed that acetic acid treatment increased the expression of ABA signaling-related genes, such as OPEN STOMATA 1 (OST1) and protein phosphatase 2C; as well as the drought response and tolerance-related genes, such as the outer membrane tryptophan-rich sensory protein (TSPO), and the heat shock proteins. Collectively, the external application of acetic acid enhances drought avoidance in cassava through the upregulation of ABA signaling pathway genes and several stress responses- and tolerance-related genes. These data support the idea that adjustments of the acetic acid application to plants is useful to enhance drought tolerance, to minimize the growth inhibition in the agricultural field

    Spatial and Temporal Dynamics of Hepatitis B Virus D Genotype in Europe and the Mediterranean Basin

    Get PDF
    Hepatitis B virus genotype D can be found in many parts of the world and is the most prevalent strain in south-eastern Europe, the Mediterranean Basin, the Middle East, and the Indian sub-continent. The epidemiological history of the D genotype and its subgenotypes is still obscure because of the scarcity of appropriate studies. We retrieved from public databases a total of 312 gene P sequences of HBV genotype D isolated in various countries throughout the world, and reconstructed the spatio-temporal evolutionary dynamics of the HBV-D epidemic using a Bayesian framework

    Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome.

    Get PDF
    The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP
    corecore