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Abstract
Amyotrophic lateral sclerosis type 6 (ALS6) is a familial subtype of ALS
linked to Fused in Sarcoma (FUS) gene mutation. FUS mutations lead to
decreased global protein synthesis, but the mechanism that drives this has not
been established. Here, we used ALS6 patient-derived induced pluripotent
stem cells (hIPSCs) to study the effect of the ALS6 FUSR521H mutation on the
translation machinery in motor neurons (MNs). We find, in agreement with
findings of others, that protein synthesis is decreased in FUSR521H MNs.
Furthermore, FUSR521H MNs are more sensitive to oxidative stress and display
reduced expression of TGF-β and mTORC gene pathways when stressed. Finally,
we show that IFNγ treatment reduces apoptosis of FUSR521H MNs exposed to
oxidative stress and partially restores the translation rates in FUSR521H MNs.
Overall, these findings suggest that a functional IFNγ response is important for
FUS-mediated protein synthesis, possibly by FUS nuclear translocation in ALS6.

1 | INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a late-onset neu-
rodegenerative disease that affects motor neurons
(MNs) in the motor cortex, brainstem, and spinal
cord [1]. It is characterized by muscle twitching, spasms,
stiffness, weakness, and finally, muscle atrophy with a
life expectancy of 3–5 years after diagnosis [2]. ALS is
the most common MN disease with an average preva-
lence and incidence of 4.42 and 1.59 per 1,000,000 popu-
lation which increases with age [3]. In �90% of the
cases, ALS is sporadic, but �10% of patients show
familial mutations (Mathis et al., 2019). ALS subtypes
are classified according to the affected gene, which includes
Superoxide Dismutase 1 (SOD1; ALS1), TAR DNA

Binding Protein-43 (TDP-43; ALS10), Chromosome
9 Open Reading Frame (C9ORF72; ALS1) and Fused in
Sarcoma (FUS; ALS6) [4], the latter leading to one of the
most aggressive and early onset types of ALS [5].

FUS is a component of the heterogeneous nuclear
ribonucleoprotein protein complex (hnRNP) and a
DNA/RNA-binding protein involved in DNA damage
repair, splicing, and multiple aspects of RNA metabo-
lism16 [6, 7]. More than 50 different mutations in the
FUS gene have so far been identified in ALS6 patients [8].
While some mutations affect the N-terminal region,
arginine-glycine–glycine box (RGG) and RNA recogni-
tion motif (RRM) region, most missense mutations affect
the nuclear localization signal (NLS) domain in the
C-terminus of the protein. These mutations result in
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cytoplasmic mislocalization and nuclear clearance of
FUS and yield an aggressive disease phenotype [9, 10].
The most common FUS mutation affects arginine
521 (R to H, C, or G) [11]. FUS mislocalization is not
unique to ALS6 but also occurs in other familial forms of
ALS and sporadic cases where FUS itself is not
mutated [12]. However, how FUS mutations lead to MN
death in ALS remains unclear.

Strategies to study the pathobiology of ALS are chal-
lenging since biopsies are associated with high cost and
morbidity and do not provide a definitive pathological
diagnosis [13]. Therefore, reliable models of the disease are
key to elucidating the molecular mechanisms underlying
ALS. In this study, we use iPSCs derived from ALS6
patients carrying a FUSR521H mutation to generate MNs
to study ALS disease biology. As iPSCs rejuvenate as a
result of reprogramming [14] and ALS symptoms present
with ageing, we expose iPSC-derived motor neurons to oxi-
dative stress to model ageing-associated effects [15].
Although patient-derived IPSCs present limitations in their
ability to simulate age-associated traits, we consider this
model crucial for understanding early phenotypes that
could lead to the development of therapeutics that may
prevent disease progression. Our models reveal that MNs
generated from ALS6 patient-derived iPSCs show aberrant
cytoplasmic localization of FUS and decreased translation
rates. Furthermore, FUSR521H iPSC-derived MNs are
more susceptible to oxidative stress-induced apoptosis than
MNs differentiated from iPSCs generated from unaffected
family members. This increased susceptibility coincides
with decreased TGF-β and mTOR signaling and an altered
cytokine landscape. Intriguingly, we find that supplementa-
tion of IFNγ to FUSR521H MN-cultures reduces oxidative
stress-induced apoptosis significantly, which coincides with
improved translation rates and nuclear FUS localization.
Overall, our results show that IFNγ treatment reduces sen-
sitivity to oxidative stress specifically of FUSR521H MNs.
While further work is required to understand how IFNγ
restores FUS localization and impaired translation rates,
our findings suggest that early-diagnosed ALS6 patients
might benefit from IFNγ treatment to slow down disease
progression.

2 | RESULTS

2.1 | iPSC-derived MNs from ALS6 patients
are susceptible to oxidative stress-induced
apoptosis

To investigate how mutant FUS affects the biology of MNs,
we generated IPSC lines from 2 ALS6 patients carrying the
FUSR521H mutation alongside with 2 IPSC lines from phe-
notypically healthy relatives not carrying the mutation (from
now on referred to as “control”). IPSCs were differentiated
into mature MNs according to an established protocol [16]
(Figure 1A) followed by immunofluorescence (IF) stainings

for HB9, MAP2, and MN-specific markers Tuj1, Islet1 to
confirm complete differentiation (Figure 1B). We then com-
pared cell viability and apoptosis rates between control and
FUSR521H IPSCs, neural progenitor cells, and mature
MNs, but found no significant differences (Figure 1C, D).
As oxidative stress has been proposed as a driving factor
in ALS [17], cells were treated with sodium arsenite (SA),
a well-known inducer of oxidative stress through the gen-
eration of reactive oxygen species (ROS) [18]. FUSR521H

mature MNs were significantly more sensitive to SA treat-
ment compared to healthy controls, evidenced by lower
viability (Figures 1E, F, S1D; data presented for individ-
ual experiments); Figure S1E (data for additional iPSC
lines) and increased apoptosis following treatment
(Figure 1G, H, S1F; data presented for individual experi-
ments); Figure S1G (data for additional iPSC lines). We
conclude that FUSR521H and control iPSCs, NPCs, and
MNs have similar viability under unperturbed conditions,
but that FUSR521H -derived MNs are more sensitive to
oxidative stress induced by SA.

2.2 | FUSR521H motor neurons show altered
expression of genes in the mTOR pathway and
genes related to the innate immune response
system

To explore why FUSR521H MNs are more sensitive to
oxidative stress than controls, we compared the tran-
scriptomes of FUSR521H and control MNs, either or not
treated with SA, by RNA sequencing. Interestingly,
FUSR521H MNs showed increased innate immune system
(i.e., “complement”) transcripts compared to healthy con-
trol MNs (Figure 1I), but only when not treated with
SA. In contrast, SA-treated FUSR521H MNs showed
decreased expression of genes involved in TGF-β and
mTORC signaling compared to SA-treated healthy controls
(Figure 1J). As TGF-β is critical for the activation of cyto-
kines [19, 20], next we measured cytokines secreted by
FUSR521H MNs when exposed to oxidative stress using a
cytokine multiplex assay. Indeed, we found that ALS6
MNs secrete more IL-8 and CCL2, and less INFγ and
IL-15 when treated with SA (Figure 1K). In line with
this, we also found that control MNs upregulate INFγ
signaling following SA treatment (Figure S1A), but
ALS MNs fail to do so (Figure S1B). These observa-
tions suggest that FUSR521H MNs show an impaired
response to oxidative stress involving decreased TGF-β
and mTORC signaling and an altered cytokine land-
scape including reduced IFNγ.

2.3 | Global translation rates are decreased in
FUSR521H NPs and MNs

As FUSR521H MNs displayed reduced expression of
genes involved in mTORC signaling following SA
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treatment and mTORC and FUS both have known roles
in protein synthesis [21–23], we next assessed protein
translation in IPSCs, NPs, or MNs from FUSR521H

patients and controls. To quantify translation rates, we
used a puromycin (a tRNA mimic) incorporation
assay, followed by quantification of incorporated
puromycin by Western blot (WB) and IF using an
anti-puromycin antibody, a commonly used assay to
measure protein synthesis rates (Figure 2A–C) [24].
While protein synthesis rates were similar between all
IPSC samples, untreated FUSR521H NPs and MNs dis-
played significantly decreased translation rates compared
to untreated control NPs and MNs. This was not the
case when comparing treated FUSR521H to control MNs,
possibly because translation rates were already low in
FUSR521H MNs, to begin with (Figure 2D, E). We also
tested whether transcription rates were affected in
ALS6 cells but found no overt differences compared to
wild-type cells in iPSCs, NPCs nor MNs (Figure 2A, B).
These observations indicate that untreated FUSR521H

MNs display a translation defect, in agreement with
findings of others [23, 25, 26].

To determine whether the abnormalities in the
FUSR521H MNs are the result of a gain-of-function
mutation in the FUS gene or the result of reduced levels
of functional FUS protein, we next modulated wild-type
FUS or mutant FUSR521H levels in control and
FUSR521H MNs by transient overexpression and RNA
interference (Figure S2C, D). We found that overexpres-
sion of wild-type FUS in FUSR521H cells nor downregu-
lation of FUS in control MNs affected protein
translation rates (Figure S2E–H). However, when we
transiently overexpressed mutant FUSR521H in control
MNs, we did observe significantly decreased translation
rates (Figure S2I, J). These data strongly suggest that
the decreased translation rates observed in ALS MNs
result from a gain-of-function mutation and not reduced
levels of FUS functional protein. Overall, these observa-
tions suggest that FUSR521H MNs are more susceptible
to apoptosis due to decreased protein synthesis rates
caused by an R521H gain-of-function mutation in the
FUS gene.

2.4 | FUS is mislocalized into the cytoplasm
in FUSR521H MNs and interacts with proteins of
the translational machinery in the cytoplasm

To better understand how mutant FUS leads to
decreased translation, we next compared (mutant) FUS
interactors between control and FUSR521H MNs. For
this, we co-immunoprecipitated (co-IPed) endogenous
wild type and/or mutant FUS from FUSR521H and con-
trol MNs followed by proteomic shotgun identification
of the protein interactors (Figure 3A–C). Interestingly,
co-IPed (mutant) FUS in FUSR521H samples had a higher
number of protein interactors compared to FUS isolates
from control samples (Figure 3A; Table S1). Interest-
ingly, FUS binding partners unique to the FUSR521H iso-
lates were enriched for proteins involved in translation
initiation that are localized in the cytoplasm (Figure 3B,
C). Note that the increased number of interactors in
FUSR521H MNs was not the result of increased expres-
sion of FUS as we observed no significant differences in
FUS protein levels between wild-type and ALS6 cells
across differentiation stages (Figure 3D, E).

Even though FUS is known to shuttle between the
nucleus and cytoplasm in healthy cells, in ALS, FUS
becomes predominantly cytoplasmic in MNs, ultimately
leading to FUS aggregates [27]. Indeed, when we assessed
FUS localization in FUSR521H iPSCs, NPs, and MNs, we
found that FUS levels were reduced in the nuclei and mod-
estly increased in the cytoplasm of NPCs and MNs, but
not iPSCs (Figure 3F, G). Wild-type iPSCs and NPCs
mostly showed nuclear FUS as expected. Control MNs
showed a reduction in nuclear FUS compared to iPSCs
and NPCs, which was further reduced in FUSR521H MNs,
evidenced from IF stainings as well as WBs of cytoplasmic
and nuclear fractions of MNs (Figure 3F–I).

As FUS has also been reported to be mislocalized in
the cytoplasm of postmortem neurons from sporadic
ALS patients [12], we next assessed FUS localization in
MNs generated from iPSCs from patients with other
ALS subtypes, including MNs from ALSp1, ALSp2,
ALSp3, and ALSp4 patients. Also, here, we detected
reduced nuclear FUS levels compared to healthy controls

F I GURE 1 FUSR521H motor neurons are more sensitive to oxidative stress than control motor neurons (MNs). (A). Schematic
representation of the differentiation protocol used to obtain MNs. (B) Representative images from immunofluorescence stainings to
characterize MNs following the differentiation protocol. Scale bar represents 20 μm. (C) MTS assays of untreated IPSCs, NPs and MNs 24 h
following plating (n = 6 differentiation experiments for each individual). (D) Percentage of Caspase 3/7-positive untreated IPSCs, NPs and
MNs 24 h after plating (n = 5 differentiation experiments for each individual). (E), (F) MTS assays of control- (Nt) or SA-treated IPSCs, NPs
and MNs (E) or control or FUSR521H MNs treated with different doses of SA (F) 24 h after plating. (G) Representative images from
immunofluorescence stainings for Caspase3/7 of control- (Nt) or SA-treated MNs. MNs were treated for 24 h. Scale bar represents 25 μm.
(H) Percentage of Caspase 3/7-positive control- (Nt) or SA-treated MNs. Cells were treated for 24 h. (I) Volcano plot showing differentially
regulated Hallmark pathways between untreated ALS and control MNs. n = 1 differentiation experiment for each individual. (J) Volcano plot
showing differentially regulated Hallmark pathways between SA-treated FUSR521H and control MNs. n = 1 differentiation experiment for each
individual. (K) Quantification of cytokines secreted by SA-treated MNs. Cells were treated for 24 h. * = p < 0.05; ** = p < 0.01; and
*** = p < 0.001, two-way ANOVA with Tukey multiple comparison test; n = 2 differentiation experiment for each individual. For all panels,
each point on the graphs represents the result of one independent differentiation experiment, unless specifically stated. For statistical analysis
and simplification of visualization, data from both individuals within each group were combined. Panels that do not state the number of
differentiation experiments include three different biological replicates for each individual.
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(Figure S3A, B), suggesting that aberrant FUS localiza-
tion is not unique to ALS6 patients. We also compared
translation rates of these cells to control cells and found

that translation rates were significantly decreased in
MNs-derived from ALSp1-4 compared to healthy con-
trols (Figure S3C, D). Together these findings suggest
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were combined. Panels that do not state the number of differentiation experiments include three different biological replicates each individual.
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that aberrant cytoplasmic localization of FUS is common
among ALS subtypes and leads to promiscuous binding
of FUS to cytoplasmic proteins with a role in translation.

2.5 | IFNγ treatment or FUS knockdown
rescue motor neuron viability following sodium
arsenite treatment

As cytokine measurements showed reduced secreted IFNγ
in FUSR521H MNs treated with SA, and we recently found
that inflammatory cytokines can protect cells from stress-
induced cell death [28], we tested whether this was also true
for FUSR521H MNs. For this, we supplemented SA-treated
FUSR521H MNs with IFNγ and found that this indeed
increased viability of FUSR521H MNs to levels similar to
SA-treated control MNs (Figure 4A, B). Furthermore,
IFNγ treatment reduced the fraction of apoptotic
FUSR521H MNs following SA exposure (Figure 4C, D,
Figure S4A; data presented for individual experiments);
Figure S4B (data for additional iPSC lines). Importantly,
we also found that IFNγ treatment resulted in an increased
IFNγ transcriptional response in SA-treated FUSR521H

MNs (Figure 4E), indicating that IFNγ treatment was
sufficient to rescue the impaired IFNγ response observed in
SA-treated FUSR521H MNs (compare Figure S1B to
Figure 4E).

As FUSR521H MNs showed impaired translation rates
and these coincide with increased sensitivity to SA treat-
ment, we next determined whether IFNγ treatment
improved translation rates in FUSR521H MNs. Transla-
tion rates were lower in FUSR521H cells not exposed to
SA, in agreement with our own findings (Figure 2) and
those of others [23, 26]. Intriguingly, while IFNγ treat-
ment did not affect translation rates in treated and
untreated control MNs, it significantly increased transla-
tion rates in untreated as well as SA-treated FUSR521H

MNs (Figure 4F, G) Figure S4C (data presented for indi-
vidual experiments); Figure S4D (data for additional
iPSC lines), in line with our observation that IFNγ treat-
ment leads to increased expression of genes involved in
mTORC signaling (Figure 4E). Therefore, we investi-
gated the effect of INFγ on FUS localization and found

that INFγ treatment increased nuclear localization of
FUS almost to levels in control MNs (Figure S4E, F).
Together, these results indicate that IFNγ treatment of
FUSR521H MNs improves their disease phenotype and
decreases their sensitivity to SA, suggesting that ALS6
patients could benefit from IFNγ treatment to delay dis-
ease onset and/or progression.

Finally, since IFNγ treatment increased nuclear local-
ization of FUS and ameliorated MNs survival, we inves-
tigated whether siRNA-mediated knockdown of FUS
would improve translation rates and thus decrease the
sensitivity to SA of FUSR521H MNs. Indeed, we observed
that FUS knockdown improved translation rates in
FUSR521H MNs to levels comparable to control MNs
(Figures 5A, B S4G; data presented for individual
siRNAs); Figure S4H (data for additional iPSC lines).
Furthermore, FUS knockdown decreased the percentage
of caspase-positive cells following SA treatment
(Figure 5C, D Figure S5A; data presented for individual
siRNAs); Figure S5B (data for additional iPSC lines).
Together, these findings demonstrate that knockdown of
FUS ameliorates the phenotype of ALS MNs similar to
IFNγ treatment in agreement with findings of others [29].

Altogether our findings suggest that IFNγ treatment
either or not in combination with FUS silencing could be
a therapeutic strategy to treat FUS-dependent ALS.

3 | DISCUSSION

In this study, we identify IFNγ as a potential compound
to protect FUSR521H MNs from oxidative stress. FUS is
ubiquitously expressed and shuttles between the cytoplasm
and nucleus in different cell types, but in healthy neurons
FUS is mainly localized in the nucleus [30]. In addition to
the role of FUS in transcription and splicing, FUS also
plays a role as an mRNA transporter between the nucleus
and cytoplasm, for instance in neuronal dendrites to trans-
port mRNA into dendritic spines, which is critical for neu-
ronal maturation [31]. Cytoplasmic mislocalization and
thus reduced nuclear FUS is a well-known hallmark of
ALS. Indeed, more than 50% of FUS mutations are clus-
tered near the C-terminal NLS domain, underscoring the

F I GURE 3 FUS localizes into the cytoplasm in FUSR521H cells and interacts with cytoplasmic proteins of the translational machinery. n = 1
differentiation experiment for each individual. (A) Venn diagram of proteins interacting with FUS in each sample type. (B) String association
diagram of FUS interacting proteins unique to FUSR521H samples. (C) Panther bar graph of enriched pathways in FUS interacting proteins unique to
FUSR521H samples. (D) Western blot of total FUS protein levels in IPSC, NP, and MNs samples. (E) Densitometric quantification of the total
amount of FUS in each sample relative to β-Actin (n = 2 differentiation experiments for each individual). (F) Representative images of
immunofluorescence stainings of FUS showing nuclear localization in control and nuclear localization in all cells and partial and cytoplasmic
localization in FUSR521H MNs Scale bar represents 10 μm. (G) Quantification of FUS localization from immunofluorescence stainings as sown in
(F) in control and FUSR521H IPSCs, NPs and MNs. * = p < 0.05; two-way ANOVA with Sidak’s multiple comparison test; (n = 4 differentiation
experiments for each individual). (H) Western blot for FUS protein in nuclear and cytoplasmic fractions of control and FUSR521H MNs. Lamin
serves as a nuclear control and Actin as a cytoplasmic control. (I) Quantification of the ratio between cytoplasmic and nuclear FUS determined from
Western blots (n = 1 differentiation experiment for each individual) as shown in (H). For all panels, each point on the graphs represents the result of
one biological replicate, unless specifically stated. For statistical analysis and simplification of visualization, data from both individuals within each
group were combined. Panels that do not state the number of differentiation experiments include three biological replicates for each individual.
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importance of defective nuclear import and the resulting
enhanced cytoplasmic localization phenotype for the
pathobiology of ALS [4].

To investigate the effect of the FUSR521H mutation,
common to ALS6, we used patient-derived iPSC models
and generated MNs to study the disease biology in a
highly physiological setting. It is important to note here
that we used siblings-derived iPSCs instead of generating
isogenic iPSC lines, for instance using CRISPR engineer-
ing. While our findings provide valuable insights into the
effect of the ALS6 FUSR521H mutation on MNs, it will
be important to confirm our findings using such isogenic
iPSC lines. In addition, since we only derived two
control- and two patient-derived lines, validation of our
findings in additional patients-derived iPSC lines will be
required to generalize our results.

Interestingly, although we find modest transcriptional
differences between healthy control and FUSR521H MNs,
the viability of untreated FUSR521H MNs is identical to
control MNs, suggesting that both cultures manage
to achieve homeostasis. However, as reprogramming
somatic cells into iPSCs coincides with cellular rejuvena-
tion, our MN model could well be recapitulating young
MNs, while ALS (6) symptoms typically present later in
life. To model age-associated damage, we, therefore,
added an oxidative stress component to our model system
by exposing the cells to SA [18, 32]. Furthermore,
increased oxidative stress and ROS accumulation has
been extensively reported as a hallmark of ALS as ROS
are byproducts of cellular respiration as neurons have
higher metabolic rates and transcriptional activity [33].
Indeed, we find that MNs carrying the FUSR521H muta-
tion are more sensitive to SA treatment than matched
control MNs consistent with previous studies [7].

We used RNA-seq to comprehensively evaluate the
impact of FUSR521H mutation on ROS sensitivity in
untreated and SA-treated MNs. We find increased
expression of innate immune system components in
untreated mutant cells, suggesting that FUSR521H MNs
exhibit intrinsic inflammation, in accordance with several
lines of evidence suggesting toxic effects of the inflamma-
tory response during disease progression [34–38]. We also
find that FUSR521H MNs display a lower expression of

genes in the TGF-β signaling pathway following
SA treatment. This is quite interesting as TGF-β
signaling has been described as neuroprotective following
oxidative stress [39–41] and suggests that the failure of
ALS to induce TGF-β following SA might be related
to the increased sensitivity to SA-induced oxidative stress.
Furthermore, cytokines measurements show that SA-
treated FUSR521H MNs secrete more IL-8 and CCL2,
and less IL-15 and IFNγ compared to SA-treated control
MNs. This is interesting, as other studies have reported
elevated levels of IL-15 and IFNγ in serum and CSF of
sporadic ALS patients [42, 43]. It is important to note
here that we quantified cytokine secretion from MNs
directly, while these other studies measured cytokines
in serum, which might not fully represent what happens
nearby the MNs. However, future work using iPSC-derived
MNs modeling other subtypes of ALS should reveal
whether the decreased secretion of IL-15 and IFNγ by
MNs is specific to FUSR521H patients or a feature more
general to (sporadic) ALS MNs.

It is still not fully clear whether the FUSR521H muta-
tion and its cytoplasmic localization result from a gain-
of-toxicity or loss-of-function effect in the FUS protein.
Our results are consistent with previous studies suggest-
ing that the FUSR521H mutation leads to a gain of func-
tion that impairs protein translation [26, 44–46] as we
have identified a large number of FUS protein–protein
interactors unique to the FUSR521H cells. We find that
these interactors have a function in translation initiation
and are localized in the cytoplasm. Furthermore, studies
in humanized mice expressing FUSR521H showed an acti-
vated stress response and impaired local intra-axonal
protein synthesis in hippocampal neurons and sciatic
nerves without nuclear loss of function [23].

We also observed that a small fraction of the
FUSR521H protein localizes to the cytoplasm, consistent
with studies showing mild cytoplasmic localization of
mutant FUSR521G, FUSR521H and FUSR521C protein [9],
suggesting that mild cytoplasmic localization of FUS is
sufficient to disrupt cellular protein synthesis homeosta-
sis. We show that this cytoplasmic localization in MNs is
not unique to ALS MNs with mutations in FUS but also
occurs in MNs derived from IPSCs of patients with

F I GURE 4 IFNγ treatment rescues oxidative stress-induced decreased viability of FUSR521H MNs. (A) Cell viability of control (Nt), SA, IFNγ
or combination-treated control and FUSR521H MNs assessed by the MTS assays. *** = p < 0.001, two-way ANOVA with Tukey multiple
comparison test; (n = 4 differentiation experiments for each individual). (B) Cell viability of control (Nt), SA, IFNγ or combination-treated control
and FUSR521H MNs assessed by xCELLigence real-time cell analysis system. *** = p < 0.001, two-way ANOVA with Tukey multiple comparison
test; n = 4 differentiation experiments for each individual. (C) Representative images of immunofluorescence stainings for Caspase3/7 on control (Nt),
SA, IFNγ or combination-treated MNs. Cells were treated for 24 h. Scale bar represents 25 μm. (D) Percentage of Caspase 3/7-positive control (Nt),
SA, IFNγ or combination-treated MNs. Cells were treated for 24 h. * = p < 0.05; ** = p < 0.01; and *** = p < 0.001, two-way ANOVA with Tukey
multiple comparison test. (E) Volcano plot showing differentially regulated Hallmark pathways between SA + IFNγ FUSR521H and SA-treated MNs.
(F) Representative images of immunofluorescence staining for incorporated puromycin in MNs for the four following treatments: Control (Nt),
IFNγ, SA, and SA + IFNγ. Scale bar represents 20 μm. (G) Relative intensity of puromycin incorporation from immunofluorescence stainings for
puromycin incorporation into MNs for the four following treatments: Control (Nt), IFNγ, SA, and SA + IFNγ. * = p < 0.05; ** = p < 0.01; and
*** = p < 0.001, two-way ANOVA with Tukey multiple comparison test. For all panels, each point on the graphs represents the result of one
biological replicate, unless specifically stated. For statistical analysis and simplification of visualization, data from both individuals within each group
were combined. Panels that do not state the number of differentiation experiments include three different biological replicates for each individual.
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familial forms of ALS linked to mutations in the VAPB
and VRK1 genes. In agreement with this, these MNs also
displayed decreased translational rates. Therefore, our
findings are consistent with other studies that suggest that
mutant FUS represses translation through association
with polyribosomes [47].

When we treated FUSR521H MNs with IFNγ follow-
ing the induction of ROS, we found that IFNγ-treated
FUSR521H MNs are less sensitive to SA-induced ROS.
Intriguingly, IFNγ treatment also led to decreased cyto-
plasmic localization of FUS and increased protein trans-
lation rates, suggesting that IFNγ treatment decreases the
impact of ROS somewhere upstream in the stress signal-
ing cascade. There is conflicting evidence regarding the
relationship between neurons and IFNs, as both protec-
tive as well as detrimental effects of IFNs have been sug-
gested for ALS neurons [48–51]. For instance, it has
recently been shown that IFNγ stimulation of adult human
astrocytes yields neurotoxicity in vitro [48]. Furthermore,
studies with high doses of INFα in ALS patients result in
cognitive decline, memory and psychomotor impairment,
neurotoxicity and other side effects [51–53]. Conversely,
both IFN-β1b and IFN-β1a treatments were found to
inhibit the pro-inflammatory cytokines (IL-6, IL-1β,
TNF-α, and IFN-γ), increase the myelin protein level in the
brain cortex, and improve the neurological status of experi-
mental autoimmune encephalomyelitis rats [50]. Finally,
INFβ treatment in ALS patients has not shown any signifi-
cant difference between patients given INFβ-1a and patients
given a placebo [49]. Therefore, while our work suggests a
positive effect of IFNγ treatment, at least for ALS6
patients, further work is needed to compare the exact role
of individual interferon signaling components between vari-
ous ALS and control neuronal cell types.

Altogether, our work indicates that FUSR521H MNs are
more sensitive to SA-induced oxidative stress compared to
control MNs and that IFNγ improves survival, specifically
of FUSR521H MNs. This IFNγ-mediated rescue coincides
with increased translation rates and decreased cytoplasmic
localization of mutant FUS. While further work is required
to disentangle the exact underlying molecular mechanism
of this rescue, our findings might suggest that IFNγ, when
dosed timely and appropriately, could protect MNs in
ALS6 patients and might thus delay disease onset or

progression. However, before testing this in patients, further
work is required, such as validating the neuroprotective
effects of IFNγ treatment in ALS6-mouse models [23] or,
possibly in patient-derived MN models that better recapitu-
late the effects of natural aging, for instance by direct con-
version of neurons from fibroblasts isolated from patients
presenting ALS symptoms [54], or by overexpressing
ageing-inducing factors such as Progerin [55].

4 | EXPERIMENTAL PROCEDURES

4.1 | Patient material

Fibroblasts from patients and unaffected family members
(Table 1) were collected at the Centro de Pesquisas sobre o
Genoma Humano e Células-Tronco. Sampling was
approved by the Comitê de �Etica em Pesquisa do Instituto
de Biociências da Universidade de São Paulo – IBUSP
#5464/Certificate CAAE # 20108413.4.0000.5464.

4.2 | Cellular reprogramming,
characterization and motor neuron
differentiation

Fibroblasts were reprogrammed using CytoTune™-iPS
2.0 Sendai Reprogramming Kit (Thermo) as per

F I GURE 5 FUS knockdown rescues translation and apoptosis rates of FUSR521H MNs. (A) Representative images of immunofluorescence
staining for incorporated puromycin in MNs for the four following treatments: Control (Scramble siRNA), FUSR521H (Scramble siRNA), Control
(FUS siRNA) and FUSR521H (FUS siRNA). Scale bar represents 20 μm. (B) Relative intensity of puromycin incorporation in MNs from
immunofluorescence stainings for the four following treatments: Control (Scramble siRNA), FUSR521H (Scramble siRNA), Control (FUS siRNA)
and FUSR521H (FUS siRNA). * = p < 0.05; two-way ANOVA with Tukey multiple comparison test. (C) Representative images of
immunofluorescence stainings for Caspase3/7 on SA-treated Control (Scramble siRNA), FUSR521H (Scramble siRNA), Control (FUS siRNA) and
FUSR521H (FUS siRNA). Cells were treated for 24 h. Scale bar represents 20 μm. (D) Percentage of Caspase 3/7-positive on not treated- (Nt) or on
SA-treated Control (Scramble siRNA), FUSR521H (Scramble siRNA), Control (FUS siRNA) and FUSR521H (FUS siRNA). Cells were treated for
24 h. * = p < 0.05; ** = p < 0.01; two-way ANOVA with Tukey multiple comparison test. For all panels, each point on the graphs represents the
result of one independent differentiation experiment, unless specifically stated. For statistical analysis and simplification of visualization, data from
both individuals within each group were combined. Panels that do not state the number of differentiation experiments include 3 different biological
replicates for each individual.

TABLE 1 Sex and age at time of collection of fibroblasts from
patients and unaffected family members.

Individual code Sex
Age at sample
collection

Control 1 Male 44

Control 2 Female 42

R521H FUS 1 Male 41

R521H FUS 2 Male 52

ALS p1 (p56sVAPB) Male 54

ALS p2 (p56sVAPB) Female 52

ALS p3 (VRK1 locus—to be
confirmed)

Female 43

ALS p4 (VRK1 locus—to be
confirmed)

Male 42
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manufacturer instructions. iPSCs were cultured in
Essential 8 medium (Thermo). IPSCs clones euploidy was
analyzed by Chromosomal microarray analysis using the
customized array-CGH 180k Agilent platform. Agilent
Genomic Workbench software was used to call CNVs.
Pluripotency markers were checked by immunofluores-
cence using anti OCT4, SOX2 and NANOG antibodies
(Figure S1C). MN’s differentiation was performed as pre-
viously described [16]. Briefly, iPSCs were cultured in NB
medium containing DMEM/F12, Neurobasal medium,
N2, B27 and Glutamax (Thermo). Differentiation was
performed using a two-step protocol: neural induction and
caudalization and ventralization to obtain motor neuron
progenitors (MNP’s). For this, iPSCs were cultured for
6 days in NB medium with Dorsomorphin (2 μM)
(Sigma), SB431542 (2 μM) (Sigma), CHIR99021 (3 μM)
(Tocris) and Ascorbic acid (0.1 mM) (Sigma) for neural
induction followed by a six-day culture in NB medium con-
taining Dorsomorphin (2 μM) (Sigma), SB431542 (2 μM)
(Sigma), CHIR99021 (1 μM) (Tocris), retinoic acid
(0.1 μM) (Sigma), Ascorbic acid (0.1 mM) (Sigma) and
Purmorphamine (0.5 μM) (Tocris) for caudalization and
ventralization of MNP’s. MNP’s were seeded in 60 mm2

plates coated with Matrigel (Corning) for MN differentia-
tion with NB medium containing retinoic acid (0.5 μM)
(Sigma), Purmorphamine (0.1 μM) (Tocris) and Ascorbic
acid (0.1 mM) (Sigma) for 6 days. For neural maturation,
Compound E (0.1 μM) (Calbiochem) was added to NB
medium with retinoic acid (0.5 μM) (Sigma), Purmorpha-
mine (0.1 μM) (Tocris) and Ascorbic acid (0.1 mM)
(Sigma). All cells were cultured at 37�C and 5% CO2 in a
humidified incubator and routinely checked for myco-
plasma infection.

4.3 | Immunofluorescence

Motor neurons were fixed with 3.7% formaldehyde (Sigma)
in 1� PBS (Gibco) for 20 min at room temperature fol-
lowed by a 30 min permeabilization step using 0.1% Triton
X-100 (Thermo) in 5% bovine serum albumin (BSA)
(Sigma). Protein labeling was done by incubation with
appropriate primary antibodies as indicated (Table S2) in
5% BSA (Sigma) at 4�C overnight, followed by incubation
with the appropriate fluorescent secondary antibody for
45 min. Slides were washed two times with 1� PBS (Gibco)
and counterstained with 1 μg/mL DAPI (Thermo) for
2 min to label nuclei and mounted with VectaShield
(Vector Laboratories). Images were taken using a confocal
microscope (Zeiss LSM 800). Quantification was performed
using Cell Profiler 3.0 as previously described [56, 57].

4.4 | Immunoblotting

MNs were harvested by accutase (Gibco) dissociation
and lysed with elution buffer (150 mM NaCl–Sigma,

0.1% NP-40–Sigma, 5 mM EDTA–Sigma, 50 mM
HEPES–Sigma pH 7.5, and protease inhibitor cocktail-
Sigma) for 15 min at 4�C and centrifuged for 10 min at
300 � g at 4�C to obtain cell lysates. Proteins were sepa-
rated on a 10% polyacrylamide gel and transferred onto
a polyvinylidene difluoride (PVDF) membrane (Sigma).
Membranes were blocked in Odyssey blocking buffer
(Li-cor Biosciences) for 60 min at 4�C. Membranes were
incubated with primary antibodies overnight at 4�C as indi-
cated. Following primary antibody incubation membranes
were washed three times with 0.1% Tween 20 (Sigma) in 1�
PBS (Gibco) followed by incubation with the appropriate
secondary antibody for 1 h at room temperature. WBs were
detected using the Odyssey imaging system (Li-cor Biosci-
ences). Quantification of the bands was performed using
Image studio lite software (Li-cor Biosciences).

4.5 | Cytokine measurements

Cytokines were quantified in media isolated from MN
cultures using the Bio-Plex Pro Human Cytokine kit
(Biorad, USA) according to the manufacturer’s instruc-
tions. MNs were plated at a density of 5 � 105 cells/well
and treated with SA (5 μM) (Sigma), IFNγ (50 ng/mL)
(Peprotech), or a combination for 24 h prior to
measurements.

4.6 | Co-immunoprecipitation

Co-IPs for FUS were performed using an Immunoprecip-
itation Kit Dynabeads Protein A/G (ThermoFisher)
according to the manufacturer’s protocol. Briefly, protein
A/G beads were incubated with 10 μL of the relevant
antibody or mouse IgG as a control. Cells were washed
once with PBS and lysed in 500 μL/well lysis buffer con-
taining 20 mM Tris pH 8.0, 10% glycerol, 135 mM
NaCl, 0.5% NP-40, and protease inhibitors (Complete,
EDTA-free, Roche) for 15 min on ice. After harvesting,
cells were centrifuged at 16,100 � g for 5 min at 4�C to
remove cell debris. The supernatant was incubated with
antibody-conjugated beads for 1 h at 4�C. Following
three washing steps with wash buffer, beads were taken
up in RapiGest (Waters) for 10 min at 65�C.

4.7 | Liquid chromatography coupled to
tandem mass spectrometry

Samples were digested using RapiGest (Waters) as a sur-
factant agent. Proteins were reduced with DTT (Sigma)
and alkylated with iodoacetamide (Sigma). Samples were
further digested with trypsin proteomic level (Promega)
in enzyme: Protein ratio of 1:50. Samples were processed
by nanoACQUITY system with a binary pump, an auxil-
iary pump and a sampler. Desalted and concentrated
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peptides were captured in a Symmetry C18 column
(2 nm � 180 mm, 5 μm) in a mobile phase (composed of
water with 0.1% trifluoroacetic acid) at 15 μL/min flow
rate for 5 min. Furthermore, peptides were separated in
an analytical HSSC18 column (75 μm � 150 mm,
1.7 μm) by elution with a linear gradient of 2% DMSO
(Sigma) in water with 0.1% formic acid (Sigma) and 5%
DMSO in acetonitrile (LiChrosolv) with 0.1% formic
acid. The proportion of the organic solution was
increased from 0% to 60% in 80 min.

The chromatographic system was directly coupled to
a hybrid quadrupole orbitrap tandem mass spectrometer
Q-Exactive (Thermo Scientific), equipped with a Nano
Flex source. Acquisition of spectral data was obtained by
a data-dependent top-15 method in which the spectrome-
ter chooses dynamically the most abundant not-yet
sequenced precursor ions from a survey scan from 390 to
1650 m/z (except for the monocharged and those with
charges exceeding 7) at 70,000 (at m/z 200) of resolution
and AGC target 5 e 6. Sequencing was achieved by disso-
ciating the precursor ion with a normalized collision
energy of 35, resolution equal to 17,500 and AGC target
of 5 e 4.

Acquired data were processed using MaxQuant
1.4.0.8 proteomics data analysis workflow 27. Protein
identification was performed by the Andromeda search
tool using the database of the human proteome Uni-
ProtKB (SWISSPROT November 2017). The following
criteria were applied for protein identification: (1) a max-
imum of two incomplete cleavages by trypsin, (2) fixed
modification by carbamidomethylation of cysteines, and
(3) variable modification by acetylation of the
N-terminal portion and methionine oxidation. Quantifi-
cation was based on the LFQ 28 label-free method.

4.8 | Puromycin incorporation assay

Cells were incubated with or without 20 μM puromycin
(Invitrogen) and fixed for immunofluorescence or lysed
for immunoblotting.

4.9 | Subcellular fractionation

Cytoplasmic/nuclear fraction separation was performed
by dissolving 3 � 106 cells in 200 μL of cold hypotonic
buffer (10 mM HEPES�NaOH pH 7.9, 10 mM KCl,
1.5 mM MgCl2, 1 mM DTT, and protease and phospha-
tase inhibitors—all compounds from Sigma). Cells were
incubated on ice and inverted every 5 min for 30 min, fol-
lowed by centrifugation for 10 min at 400 � g at 4�C.
The supernatant was taken as the cytoplasmic fraction
and the pellet was washed three times with a cold
hypotonic buffer. Pellets were dissolved in cold 100 mM
Tris–HCl (pH 9.0) containing 12 mM SDC (Sigma),
12 mM SLS (Sigma), and protease and phosphatase

inhibitors, and collected as the nuclear fraction. Both
fractions were subjected to SDS-page and WB.

4.10 | EU labeling

Cells were incubated with 10 μM EU (5-ethynyl-uridine;
Click-It EU Alexa Fluor 488 Imaging Kit; Life Technol-
ogies) for 30 min. Cell nuclei were labeled with DAPI
(Sigma) at a concentration of 5 μg/mL for 5 min. Images
were taken using a confocal microscope (Zeiss LSM 800).
Quantification was performed using Cell Profiler 3.0 as
previously described [56, 57].

4.11 | MTS assay

MTS assays were performed according to manufacturer’s
instructions. Briefly, 15,000 MNs were plated per well
and treated with IFNg (50 ng/mL), SA (5 μM) and for
the time indicated at relevant figures. MTS reagent
(10 μL) (Promega) was added directly to the wells and
incubated at 37�C for 4 h. Absorbance was measured at
490 nm on a SpectraMax Plus 384 reader (Molecular
Devices; Sunnyvale, Ca).

Cell viability assay kill curves were quantified by the
impedance-based xCELLigence real-time cell analysis
system (ACEA Biosciences, San Diego, CA, USA). For
this, 50 μL of cell culture media was added to each
96 wells of the E-Plate 96 PET (ACEA Biosciences) for
background reading. Subsequently, 50 μL of cell suspen-
sion containing 15,000 cells was added to each well and
placed inside the xCELLigence incubator. Cells were trea-
ted with IFNg (50 ng/mL) (Peprotech), SA (5 μM)
(Sigma) and impedance reflecting changes in cell adhesion
and cell death were measured every 15 min for 24 h. Data
are presented as changes of impedance (‘Cell Index’) over
time, according to the manufacturer’s instruction.

4.12 | RNA sequencing

RNA was isolated using an RNeasy mini kit (Qiagen).
RNA quality and quantity of the total RNA were
assessed by the 2100 Bioanalyzer using a Nano chip
(Agilent, Santa Clara, CA). Total RNA samples having a
RIN >8 were subjected to library generation. Strand-
specific libraries were generated using the TruSeq
Stranded mRNA sample preparation kit (Illumina Inc.,
San Diego, RS-122-2101/2), according to the manufac-
turer’s instructions (Illumina, Part #15031047 Rev. E).

Polyadenylated RNA from intact total RNA was
purified using oligo-dT beads. Following purification, the
RNA was fragmented, random primed and reverse tran-
scribed using SuperScript II Reverse Transcriptase
(Invitrogen, part 72 #18064-014) with the addition of
Actinomycin D. Second strand synthesis was performed
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using Polymerase I and RNaseH with replacement of
dTTP for dUTP. The generated cDNA fragments were
30-end adenylated and ligated to Illumina Paired-end
sequencing adapters and subsequently amplified by
12 cycles of polymerase chain reaction. Sequencing
libraries were analyzed on a 2100 Bioanalyzer using a
7500 chip (Agilent, Santa Clara, CA), diluted and pooled
equimolar into a 10 nM sequencing stock solution. Illumina
TruSeq mRNA libraries were sequenced at a resolution of
50 base single reads on a HiSeq2000 using V3 chemistry
(Illumina Inc., San Diego). Resulting reads were trimmed
using Cutadapt (version 1.12) to remove any remaining
adapter sequences, filtering reads shorter than 20 bp after
trimming to ensure efficient mapping. The trimmed
reads were aligned to the GRCm38 reference genome
using STAR (version 2.5.2b). QC statistics from Fastqc
(version 0.11.5) and the above-mentioned tools were
collected and summarized using Multiqc (version 0.8).
Gene expression counts were generated by featureCounts
(version 1.5.0-post3), using gene definitions from Ensembl
GRCm38 version 76. Normalized expression values were
obtained by correcting for differences in sequencing depth
between samples using DESeq median-of-ratios approach,
and subsequent log-transformation of the normalized counts.

4.13 | Statistical analyses

Experiments were performed in at least biological tripli-
cates as stated in the figures. Data were analyzed by one-
way and two-way ANOVA followed by Bonferroni post
hoc testing. A two-tailed unpaired t-test was used for
pairwise comparison. GraphPad Prism software was used
to perform all statistical analyses (version 6.0 GraphPad
Software Inc.). Quantification of data is presented as
mean ± standard error of the mean (SEM), and p-value
thresholds are presented as: * = p < 0.05; ** = p < 0.01;
*** = p < 0.001; and **** = p < 0.0001.
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