150 research outputs found

    Post-combustion CO2 capture in coal-fired power plants: Comparison of integrated chemical absorption processes with piperazine promoted potassium carbonate and MEA

    Get PDF
    AbstractA thermodynamic and economic comparison of post-combustion CO2 capture processes using aqueous solutions of piperazine (PZ) promoted potassium carbonate (K2CO3) and monoethanolamine (MEA) based on fair boundary conditions and constant assumptions using rigorous thermodynamic models is described. In contrast to a first preliminary comparison, it is shown that under the stated assumptions and considered boundary conditions, a 7 m MEA solution performs better in both thermodynamic and economic terms than aqueous solutions of K2CO3 and PZ

    Variational methods and nonlinear differential equations

    Get PDF
    This paper is a survey of recent applications of the Direct Methods of the Calculus of Variations to nonlinear equations

    Semi-empirical model for the direct simulation of power plant with integrated post-combustion CO2 capture processes by wet chemical absorption

    Get PDF
    AbstractIn this work, a semi-empirical column model is developed to represent post-combustion CO2 capture processes with chemical solvents in coal-fired steam power plants. The solvents are represented by empirical correlations on the basis of fundamental measurement data (CO2 solubility, heat capacity, density). The model of a CO2 capture process including the column model is coupled to detailed models of a hard-coal-fired steam power plant and of a CO2 compressor to evaluate and compare the impact of CO2 capture on the overall power plant process using six different solvents

    Process intensification for post combustion CO₂ capture with chemical absorption: a critical review

    Get PDF
    The concentration of CO₂ in the atmosphere is increasing rapidly. CO₂ emissions may have an impact on global climate change. Effective CO₂ emission abatement strategies such as carbon capture and storage (CCS) are required to combat this trend. Compared with pre-combustion carbon capture and oxy-fuel carbon capture approaches, post-combustion CO₂ capture (PCC) using solvent process is one of the most mature carbon capture technologies. There are two main barriers for the PCC process using solvent to be commercially deployed: (a) high capital cost; (b) high thermal efficiency penalty due to solvent regeneration. Applying process intensification (PI) technology into PCC with solvent process has the potential to significantly reduce capital costs compared with conventional technology using packed columns. This paper intends to evaluate different PI technologies for their suitability in PCC process. The study shows that rotating packed bed (RPB) absorber/stripper has attracted much interest due to its high mass transfer capability. Currently experimental studies on CO₂ capture using RPB are based on standalone absorber or stripper. Therefore a schematic process flow diagram of intensified PCC process is proposed so as to motivate other researches for possible optimal design, operation and control. To intensify heat transfer in reboiler, spinning disc technology is recommended. To replace cross heat exchanger in conventional PCC (with packed column) process, printed circuit heat exchanger will be preferred. Solvent selection for conventional PCC process has been studied extensively. However, it needs more studies for solvent selection in intensified PCC process. The authors also predicted research challenges in intensified PCC process and potential new breakthrough from different aspects

    Nonlinear dynamic analysis and control design of a solvent-based post-combustion CO2 capture process

    Get PDF
    A flexible operation of the solvent-based post-combustion CO2capture (PCC) process is of great importance to make the technology widely used in the power industry. However, in case of a wide range of operation, the presence of process nonlinearity may degrade the performance of the pre-designed linear controller. This paper gives a comprehensive analysis of the dynamic behavior and nonlinearity distribution of the PCC process. Three cases are taken into account during the investigation: 1) capture rate change; 2) flue gas flowrate change; and 3) re-boiler temperature change. The investigations show that the CO2capture process does have strong nonlinearity; however, by selecting a suitable control target and operating range, a single linear controller is possible to control the capture system within this range. Based on the analysis results, a linear model predictive controller is designed for the CO2capture process. Simulations of the designed controller on an MEA based PCC plant demonstrate the effectiveness of the proposed control approach

    A comparative study of MEA and DEA for post-combustion CO2 capture with different process configurations

    Get PDF
    This paper presented a comparative study of monoethanolamine (MEA) and diethanolamine (DEA) for post-combustion CO2 capture (PCC) process with different process configurations to study the interaction effect between solvent and process. The steady state process model of the conventional MEA-based PCC process was developed in Pro/II¼ and was validated with the experimental data. Then ten different process configurations were simulated for both MEA and DEA. Their performances in energy consumption were compared in terms of reboiler duty and total equivalent work. The results show that DEA generally has better thermal performances than MEA for all these ten process configurations. Seven process configurations provide 0.38%–4.61% total energy saving compared with the conventional PCC process for MEA, and other two configurations are not favourable. For DEA, except one configuration, other process configurations have 0.27%–4.50% total energy saving. This work also analyzed the sensitivities of three key parameters (amine concentration, stripper pressure and lean solvent loading) in conventional process and five process modifications to show optimization strategy

    Process modelling, validation and analysis of rotating packed bed stripper in the context of intensified CO2 capture with MEA

    Get PDF
    Rotating packed bed (RPB) system has applications in CO2 removal using chemical solvents which can reduce the size about ten times compared to common packed bed (PB) system. In this study, RPB stripper using monoethanolamine (MEA) solution is modelled in gPROMSÂź software. The model has been validated using experimental data from literature and show good agreement. In addition to stripper modelling and validation, the process analysis is accomplished in this study by assessing the influence of four parameters namely rotor speed, reboiler temperature, flow rate of rich liquid, and pressure on desorption efficiency and desorption energy

    Carbon capture from pulverized coal power plant (PCPP): Solvent performance comparison at an industrial scale

    Get PDF
    Coal is the most abundant fossil fuel on the planet. However, power generation from coal results in large amounts of greenhouse gas emissions. Solvent-based carbon capture is a relatively mature technology which can potentially mitigate these emissions. Although, much research has been done on this topic, single-point performance analysis of capture plant and ignoring operational characteristics of the upstream power plant may result in unrealistic performance assessments. This paper introduces a new methodology to assess the performance of CO2 capture solvents. The problem is posed as retrofitting an existing pulverized coal power plant with post-combustion carbon capture using two solvents: CDRMax, a recently developed amine-promoted buffer salt (APBS) solvent by Carbon Clean Solutions Limited (CCSL) and the monoethanolamine (MEA) baseline solvent. The features of interest include model development and validation using pilot plant data, as well as integrated design and control of the capture process. The emphasis is on design and operation of the capture plant, when integrated with the upstream coal-fired power plant, subject to variations in the electricity load. The results suggest that optimal design and operation of capture plant can significantly mitigate the energetic penalties associated with carbon capture form the flue gas, while providing effective measures for comparing solvent performances under various scenarios
    • 

    corecore