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ABSTRACT

a\ :;e

This -paper is a survey of recent applications -of the
Direct Methods of the Calculus of Variations to nonlinear -
equations. R.'Coﬁrant has extensively treated the linear
Sturm-Liouville Eigenvalue problem in.termé of a quadratic
functional called the Rayleigh Quotient. More recently,

Z. Nehari and others have been able to generalize this
technique for nonlinearﬁsecond-order differential ;quations,
both singular and nonsi%éular.

I This variational approach has been most useful in
establishing the existence of specific types of-solutioné
for a given differehtial equation. For instance,it is
shown that the equationm ’

y" + yF(y4,x) =0, | \

7 ) | | | “g
where F(t,x) is subject to conditions guaranteeing positiveness

and continuitg, has solutions vanishing at both endpoints of

any finite .interval la,b]. Moreover, for each integer Kk,

) S
. ! Ry

there is a solution which vanishes (k-1) times in the same

interval (a,b). On the other hand, the equation

®

y" - yF(y,x) = 0,
is shown to have a positive solution through any point (a,A);
A > 0, which decreasés mdnotonically ig\[a,w).

The solution in each case is, except for a constant

. multiple, g fumction: ‘minimizing a functional J(y), which

is related to the given differential equation through Euler-

~ty
,,,,,
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Lagrange conditions. An interesting feature of thié ,
variationallépproach is that once a positive lower bound
“for ‘the functional and a minimiéihg sequence have beén
shown to exist, the differential equation is used to

generate another minimizing sequence converging to a

solution having the desired properties.

B ; B Finally, a singular problem is also discussed, namely,

u" - u xPTRK =

0, 1<k<5, xe [0,0), i

-  This equation is shown to have a nonnegative continuous L
solution u(x) for whieh uf(0)= u(x) = 0. Moreover, if
1 <k < 4, it is shown that u'(0) is finite.
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I. TINTRODUCTION.
| ‘The simplest problem of. the Calculus bf Variations

is that of minimizing

- b o @
(1.1) J(y) =ff(x,y,y'~)dx
over the class C ofiall continuous/fuhctions with piece-
wise continuous derivative on [a/gi, passing through the
two points (a,A) and (b,B). It is well known that a .

N ' » | -

necessary condition for (1.1) to have.a minimum y, is
that y satisfy the Euler-Lagrange equatio?fyﬁﬂ
(L.2) df d_ df y _

oy  dx (ByT' 0

If the minimum.prbblem has a solution then that solution

will necessarily be .the solution to the corresponding

& |

boundary value ﬁroblem for the differential equation (1.2).

However, sufficient conditions for the existence of an
| » , |
extremal are not as easily obtained. It is even possible

to construct examples of wvariational problems for which

there is no solution among the class of admissible functions.

!

For instance, the functional

1

IG) = faty %
T

has a greatest lower bound of zero over the class of all

continuous functions having piecewise eontinuous derivative -

and satisfying y(-l) = -1, y(l) ¥ 1. This can behsgen by

\
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with the homogeneous boundary conditions

taking for arbitrarily small positive ¢ the function y = -1
for x < e, y= x /e for |x|] <€, y=1 for X > €. However,
the integral assumes the value zero only for the functions

y = constant. Slnce no such function is adm1551b1e the
\/’

- minimum problem has no solutlon For a varlatlonal problem

to have a solution it-is often necessary to impose additional

restraints on the class of admissible functions.

- —

One of the most powerful methods devised for variational

problems is the so-called Direct Method and is best illus-
/ .
trated by the Sturm-Liouville problem as treated by R.

Courant [1]. The technique employed here will lead us to

‘ S
generalizations for nonlinear equations developed more

3 T
recently by Z. Nehari [6], [7], and [8]. The results we pre-

sent are most directly related to the oscillation questions

:of.differential'equations; although results concerning

‘boundedness are also obtainable.

Consider the equation —
. .

(1.3) @' + G-y = 0

(l.4a) r(a)y'(a) cosa - y(a) siqg = 0

(1.4b) r(b)y (b) cosp - V y(b) sinB. 0,

where O.S adm 0BT, ¥, psqe Cla;b]. We define

the functional J(y)/“yll2 by J
| ~ |b. b
(1.5) J(@y) = r®)y'(x)| + f(ry'2 + qy%)dx

b .
f py’dx,
a

(1.6) |y|2.

-4- ‘ ot
[




, s
; - | |
5 This quadratic functional is often referred to as Rayleigh's

Quotient.

; 'Theorem 1.1 The.eigenValue problem (*.3) + (1.4) is
j solved by a solution to the minhhum.problem”"
& T2
f where C is the class of all contiqgous functions wiéh
f h piegewi;e continuous derivative on [a,b], and satisfying |,
(1.4).
% G Proof: °F9r ye C, we'qannalways-find a normalization:'
§ s constant p such that prH2 = 1. Moreover, since the
§ | integral of J(y) is positive‘d;finite, J(y)»ié‘bounded
% : below. The minimutm problem, therefore, makes sense and
inf J =
Ty T
. - . L | ‘
exists. Given any set of boundary conditions (1.4), we
- can alwaysmconstruét a non-érivial function”§ff0r which
- | J(y) is finite, sogthat C ié'non-empﬁ . For instan;e,
| sin x is an admissible function forfy(O) = y(#) = 0.
i Since this is true in general, the Rayleigh Qﬁotient muét
é be smaller than or equal to that given by this particular
é function. We may therefore restrict ourselves to the
%-V ' subclass C*(C for'whichdyé C# imp1ies pr“ 2 = 1 and
é J(y) £ K, where K is some finite constant, Since a
% solution to the minimal problem exists, there is a seqﬁénce
; ~{yn} ©C* such that J(y:i) - for;n‘ﬂ-w ;  To show C* is a
% compact family, recall that r and p are pbsitive and.con? | “  .
- qw P




’If‘u € C*, then

now show that y is the minimizing function, i.e., J(y) = A

- ~ USRI SR |

.

' T . | . "'6"
tinuous so that there exist positive constants R, P, such

N
that, r(x) > R, p(x) > P on [a,b].

- - {
Y

x,
([ urdr)?
Xl |

o 2
u(xg) - w17

Ao

“ - @w_g,(K/R) | %, - %, | ’

so that C* is an equicontinuous family. Moreover, by the

hean value theorem and the fact that “u“2 = 1, we have
for some t € (a,b)
b b s

1= [pu?ax = o(e)[pax = uE(e)a?.
& a

Therefore, for each u € C*, u(t) =‘A'¥Tf0r some t e (a,b).
Upon setting Xy = X and Xy = t, we have in the above

|u(x) -ﬁA”1F3= (K/R) (b-a), thereby démbnstrating'that'C* is

unifermly bounded. By Ascoli's Lemma, there exists a sequence,.

~ 4

“which we shall also designate b Y, contained in C* and

~

converging uniformly to a continuous function y. We must 7 -

L

°

Let ve D

1[a,b]‘for which v(a) = v(b) ?“b. Then

Yp ¥ €v € C and we. have J(y  + ev) > |y  t ev|

-~ - % §
. "7
u

i
;
H
&
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for arbitrary €30. This implies

where

s Bp =BG - (ypev),

o - | G
C =J() - lvl?, "
b b -
: +}/}ryév' + qynv)dx{j

L oo
B(y,sv) . = r(x)x}! (x)v(x)
s | a a
.b ’ - | -
(y,v) = afpym\'dX- ' -

Since lim A.n = 0, for n lafge enough we can have An <-e2

’
n — oo

Thus from (1.7) we. seée that

Yy -

B < % (1+0Ce J

- &

and since € can be made arbitrarily small we must conclude

that

(1.8) 1lim B(y,,v) = (y.,v) =0

n — o ! }

be the Green's function definedibyw'

:‘iﬁi .
In particular, let & , f

S
O a# L) i"‘;\%f -

(b-a)g(x,t) = (x-a)(b-t) ag x<t
’ (t-a)(b-x) - t.{ x< b

“

Passing to the limit in (1.8)3We obtain

B (Y)g) - (y;/é) =‘ 0° | o : ‘ f‘ ) . wﬁ’

.} | o,
. N o o
When this is written in integral form we see that

Y
PR « f \
i || ey B » ;3 o D e D el o D Y e D »

0{“
S Dy
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l/iry'g'-+ (@ - Ap)ygldx
e |

!

t b b
= ryg'l “+-ryg'l - [yl (xg"' + (Op - Qgldx,
a t a _
- a “ | .

which can be simplified to .

ﬁ”“\(b-a)r(t)y(t) = (b-t)r(a)y(a) + (t-a)r(b)y(b)

2 b :
-+\/;(x)[r'(x)(b-t) + (Ap-q) (x-a).(b-t) Jdx
g a. |

b\7@

+ [y 1x" () (a-t) + (p-q) (t-a) (b-x) ]dx.
a \ , '

S o -é:}?( /¢
By differentiating Ehe left side with respect to t}, solving
[

for r(t)y'(t) and differentiating again, we find that y(t)

®

o / L .
{s indeed a' solution to/the equation .

) }

Hg[ra%]

Since this is &rue for ahy t € [a,b], it follows that y

+ [Ap(t) - q(e)] = o.

¥

is a C2 Salution~of-the'system;(1;3) f‘(l.4). Multiplying
this equation.by y and integrating gnée‘byparts, we see
“that J(y) < XH&“Z so that y does in féét;minimize the
‘Rayleigh Quotient. Lf there exists ax*<'% and a corres=
, ponding funct;bn y* satisfying thé sysfem (1.3) +(1.4),
N then multiplying (1.3) by y* and integréting by parfs, we

see that.J(y*) ;~A*Hy*ﬂgwhich contradicts the minimal

F property‘of AN. This completes the'prqof of the theorem.

L3
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. B 3 o - ' | -0-
- This technique establishes the existence of the first
eigenvalue and eigenfunction for the Sturm-Liouville eigen-

.
S

value problem, We remark that thié'prob}em‘may also be

solved by first inverting the system (1.3) + (1.4) into its.

equivalent integral equation and then maximizing a suitable

‘quadratic functional.

J/"\ .
s
b3 0T

| T eliv ey

i




;; o ” | - , - .10%
f : ' | " 2n+1 —_ N
; 11: THE NONLINEAR EQUATION y" + p(x)y = 0
%; We consider in this section a particular nonlinear
problem - ) | o
2.1) y" + p@y™ = 0y a0 ’

with the boundary conditions

(2.2) y(a) = y(b) = o,

where p is a nonnegative continuous function on [a,b]. This

equation is considered first because it is a direct general-

ization of the linear equation, (n = O),'and~the1'¢thod of

a

discussing this problem depends to a gféat extent upon

known results' for the linear Sturm-Liouville eigenvalue

O e e T v

'*problem;‘What'we shall prove is the following:

_IHEOREﬁ 2.1. For each pair of positive numbers a and b
| . | with a < b < », equation (2.1) has' a positive solution y
; satisfying (2.2). | / .

Proof: Consider the functional

b b

(2:3) 3. = (Jy'2an™) [py 2
U _._a: a ‘

- which we shall call the generalized Rayleigh Quotient. What
we shall attempt to do is to minimize J(y) over the class C

.of all continuous functions with piecewise continuous .

derivatives on la,b], satisfying (2.2). First we show that
,‘J(y) has a positive lower bound. Let K be the lowest eigen-
value of the system |

.‘(X-pr)i ¥ LLP(X)U' = o, U(35{=, ﬁ(b) ‘= 0. .

I g “'"

L
v \/ ' > ) ) Y
. . v . . T, )
. . .
. . . K "
v ‘.' . ' ’ ’ ‘ >
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from wﬁich“we obtain the inequality

117

Then by Wirtinger's inequality,'for any v € lea;b] such

that v(a) = 0, we haﬁé

Setting v = yn+1, where y é C, Yieids
b b o
" f p(x)y ™ ax < (n+1)2f x Pyl 12ay.
a a

On the other hand, Schwarz's inequality shows that

X X X
y2(x) = (|y'at)> < (x - a{/;'zdt < %/?'zdt
é a ; a ‘a

" so that

b b X X
gt/by2n+2dx < (n+1)%/§'2dt( Xﬂzdt)ndx
a a ~

b
(n#1) (| y'%dx) ™,

a

0 < u < (n+1)JI(y).

This shows that J(y) has a positive lower, bound. Let

A= min J(Y):
' C

where we already knOW'that A.> 0. Hence there exists a

minimizing sequence {yn} of functions such that

Nn — o

lim J(yn) = A.

We now proceed to show that the sequence {yﬁhmay be replaced




e e e g5 ey o

function of the linear system ““ <

If y in C is further normalized by the condition

which establishes the right half,'nameiyg Q g_JYy).

(.

-12-
| 20 (31 * ot o

by another sequence {u_} where u € C [ayb], and satisfy

the boundarj)conditions u(a) = u'(b) = 0.

t

LEMMA 2.2 Let g and u(x) be the first eigenvalue and eigénQ'

~

(2.5) " f’a[p(x)yzn]u = b; u(a) = u(b) = 0.

, b 4

(2.6) k/wy'zd%. = 1/
a . | .

then , - “

,

Proof: By Wiptinger's inequality'weuhave

¥ b
?/;yznvzdx g_\/;'de
a o a - |

for all admissible functions v. In particular y is an ad- .

fmisgible function;SO that

b b | 4 - ;ﬁ

®

By Holder's integral inequality for nonnegatiVe

functions f, g,

b b b
f frgidx ¢ ( f fdx) " ( fgdx}' S,0<r<1, r+s =1,
a a a o |

~and equality holds only if f and g are propoftional.

<<~
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‘By setting

+1'2n
pr/mtl 2n,

§W~weisee that
. . (2.8) E/byznuzdxﬁpfl < g/byzn+2dx)€/bu2n+2dx). | q%ﬁsm}
a . 3 a ‘ - ' .
Now if u is a solution of (2.5) we have

b

s | b
| - k/u'zdx =‘t%/;y2nu2dx.'
3 ‘ N a.

a

However, by (2.8) we obtain-
b b b “ o )
; | a a . a . 3

5 . ..-..‘\I_

R U X Y A o2 o e
N

| U51ng the normalization (2.6) and the first half of in-
o equality. (2.7) we see that

L . b " b

- o (u?an™ ¢ afpy?™2ax,
; a _ T |
which completes tﬁe proof:oii(é;7). | s

By the homogenelty of J(y), 1f y € C, so is ky for any“e

non-zero constant k s@ that we may suppose the mlnlmlzlng iﬁhf-
sequence {y_} to be normallaed by (2.6). Thus if wédreplace. ;;
each{y_}by the correspondlmg ﬁp defired by (2.5) then ‘ﬁasz:]
Lemma 2.2 shows that J(u ) g.a' g_J(y ), where angis the - |

corresponding 1east¢e1genvalue of the linear system. Since

each u € C we may also have A g_J(un) so that in the limit

@ \

(2°9) - A Ny lim J(U ) = Jim o = l1lim J(y ) ~ | Lo

n — oo n—)~oon n — oo
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g o o R S o o S U/ | g
g The minimizing sequence E;} ‘may be replaced by another
§ mlnlmlzlng sequence {u}l which is of’the c}ass C2[a b].
f ~ These functloqghgn’ere;thewflrst eigenfunctions of the "
systems . | l | :
(2.51) ul -+ o, [P(X)y »ui = iq, %K§%31= u; (b) 4¥N\§.
- Each of these may be replaced by iie}equi lent Fredholm
iqtegral equatiqn . |
S __ ¢ .
(2.10) u(t) =<x\/é(x,t)p(x)y2nudx )
. | | a “
§ ?ﬁ -  “where g(x,t) = (x - a) for a g;ng t and g(x,t) = (t - a)
§ ’ for t < x £ b. The subscript has beenudropped‘for convenience.
| We remark here that if the boundary condition (2.2)“is re- .
Aplﬁced by y(a) = y(b) = 0, we‘need only make an appropriate ‘
'.chengeein the definition.of the Green's function to estab-
lish an alternative form of Theorem 2.].

- In either case ﬁ |
8(x,t)) - gt < e, -ty
" so that ' |

I b . |
(2.11) lu(tz) _ u(tl)l 2n+2 g a2n+2|t2 - tll (Jﬁpyznudx)2n+2°

fW1th the aid of the Schwarz 1nequallty, and (2.8) we f1nd

; that \ | ' o " - : h 4 C
: +2 ‘
(2.12) f py2Ran) B ¢ fpyznu )™ ( [pyPRax)™t




b o
2n 2

(S. (/py" u

a

Now if u is normalized by (2.6) or what amounts

thing,
| b

b ) L
frRan’ = [
a ’ :

a

then

dx =

b |

' 2n4+2 . -1
- J(@y) = (fpyn dx)
a .

SO thaf“f?.lZ) reduces to

b ‘ . b -
{/byznudx)2n+2 < a-(2n+1{/bdx.
a | - a

1,

2

ConSequently, (2.11) bétomes

»

9

N
ax) ™ ([py?™2ax) ([ pa)
| a ' a

-15-

to the .same

»

S

(2.13) ' u(t,) - uey) < MlE, -ty

where .

— ,

| b

M = (o/pdx
a

r

')1/2n+2'”“

Using the sequende fui},vdefine‘a'dguble sequence {uij} by

I
=3

(2.14) U1 Lo

.

= (), ulJ (a) - u 1 3 (b) = 0.
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where a5 is the lowest eigenvalue of the system. By apply-

| | 1ng Lemma 2.2 twice we find that J(u--) S_a i S.J(u---l) < alj

so that Qs ; g_alJ 17 %44 L ay- Since uij € C we must have

that A< a;; L a; and from (2.9) we see that

lim a.\ = . ‘ _ ‘ N
n-—>ool 7 “ | ' Bft

From (2.13) and_the fact that the .. are uniformly Bounded

_ i1
we have
[u, 1t = uu() < Me, - e

where M is independent of t2, tl’ and i.LCoﬁsequently,

the sequence {uii} is equicontinuous on [a,b]. We denote

so that {vi} is alsg uniformly bounded. It follows by
Ascoli's lemma that there exists a subsequence {v¥} which
conyerges uniformly to a continuous function y}

By the same arguement {u _1} is'also compact and we may

take, if necesEary a subsequence-which converges uniform-
1y‘toeyi. We then must have by the normalization requirement

forn =«

b N .
xﬁb(X) yzn;%qx = 1.
a _

Thus, neither y nor y; can be identically zero on [a,b].
A - Since the convergence is uniform, both limit functions must

_satisfy the bountary conditions (2.2) Now, Y = ¥q for by (2.8)

N

1
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+ 2n+2 |
- {/; 2n de)n +1 < Q/’yZn ZdX)ng/;y n zdx)
a a
Since y and y, are concave functions in C, it follows

from the normalization condition for both that | J

)

NP eIyt ¢ A

Thus the inequalit§ (2.8) must in fact be equality from

- which we conclude that y and y, are proportional. In view

of the boundary conditions (2.2) and the normalization
(2.6), they are identical.

Using the-representation (2)10) we see that in the limit
the function.y must be a solution ofﬁthe nonlinear Fredholm

integral equation

() x\/é<x £)pG)y? ™

The function y is then a-C2

y" + Ap(x)y2tH

Upon setting Y(x) = xl/zny(x) we have the desired solution

solution of the equation

=0 with. the boundary conditions (2,2).

to (2.1).
We remark that we could establish the existence of a

solution of (2.1) vanishing n-1 times in the open interval.

 However, we prefer to forego this discussion until Section IV

where it will be treated for a more general class of equations.

which include (2.1) as a sPecial case.

8
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IIT: A GENERAL CLASS OF STRICTLY'NON~LINEAR EQUATIONS

i
4 e ) .

3 . . ° 4 - ' ° - . |
; | In this section we shall consider the more general
I R )

non-linear equation

| - | (3-/1; y" + yF(yz,X) = 0, -

where F(t,x) is assumed to satisfy the folloWing conditions:

(3.2a) F(t,x) is éont%nuousin t and x for t in [O,x) —
“and x in [a,b]; |

(3.2b)- F(t,x) >0 for't > 0 and x infa,b];

(3;2c) t-eF(t,x) is a non-decreasing function of t

for t in [O,») and some positive €.

- It-should .be noted that because of (392c)‘ the strictly
iinear equation (1.3) is excluded ffom this discussioh.
Another direct consequenggwqﬁi(B.Zc) is that F(t,x) is a
moﬁotonely increasing function of t. Thus, (2.1) is included

? aé\a special case. of (3.1); Howevgr, the treatmentiof (3.1)

.is somewhat different in that the functional used to study
solutions of (3.1) is of an entirely different natureffrom
the.generalizéd RayleighaQuotient.

g
‘No L%Eschitz condition has been imposed to guarantee

; -

uniqueness, however the trivial solution y(x) = 0 is unique
as we shall now prove. Assume there exists é solution of
] | (3.1) such that y(a) = y'(a) = 0, but y(x) ¥ O on a small ~
| . Interval [;; a+é]. If y(x) = 0 on this interval, we may

R -~ replace a by a', where ad is the largest value such that
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; y(x) = 0 on Ea;a']. There are'two,caSes to consider, namelyéhﬂrw
% | whether of not y(x) has a zero in [ ,ate]. In the 1atter‘
; ‘ ”:‘ - case we may write by Taylor s formula with remainder *
3 ) % y(a) + y'(@ (x - a) - f (x - s)y(s)F(y s, 1 T
o k . ::ﬂ'w' ;t(
Since y(a) = y'(a) = O we obtain '“mhim“ﬁl 3
X | o '
y(x) + h/ki - 8)y(s) F(y°,8)ds = o, J

ﬁ whlch is impossible as y(x) does not change sign 1hlza'a+e]
: o and F(y2 x) > 0., In the former case there ex1sts ;‘sequence
§ of points {x }, such that X4 # x.J for i ¥ j, and lim X = a,

for which y(x_) = 0. In the 1nterve1[a,xé/ (3.1) may be

| replaced by the integral equation I
x: .
y () fg<x $)y(s)F(y%,g)ds,
where the Green's function g(x,s) is defined by g(x,s) =
i ‘ (xn - a)'l(x - a)(s - xn) and g(x,s) = (x - a)'l)gs - a)s.
i (x - s) in the'ihtervale la,s] and [s?xn]'reSPectively. Let
X be the p01nt in [a,xn],at which y(x) attains its maximum
M; Therefore h @ u i;;,éf.;'
gad x | . DL

. e -, 9 . B E
g - M < Mﬁk/\g(x,s)F(y ,s)ds.r

HoWever, F(t,x) is increasing for t > a, Mh S»Ml’ and by

. .
observing thatp4g(x,s) g_(xn - a) we have
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Agaln'we have a contradlctlon, since as n —*m, (x - a) —» 0,

The uniqueness of the trivial solutlon)ls thus established.
It has also been deduced,by Moroney [4] that if F(t,x) is
a nonedecreasiné function of x for each t >\ 0, then the
solution satisfying y(a) = y'(b) = 0 is unique.

| Fot ;oﬁsiderétion of the oscillatory properties of (3.1)
we consider the functional
“ b , . , (]
3.3) I3 = [1y'° - c(y?,x))dx,

U/

a

‘wWhere

. o
(3.4) G(t,x) = fF(s,x)dso
- 0

Even though equatio;\%§¢1) is a necessary condition for the

- existence of a minimal for J(y), one further restraint is

needed to insure the~exiétenée of a lower bound for J(y).

‘& . :

The restriction in question is

. | S ’ | i?
(3.5) /\y dx -/\y F(y ,X)dx, ¥ | _.f J
a o

which is satisfied by any solution of (3.1) having homo-

sz Bess 3

geneous boundary condltlons. o
If we take C to be the class of all non-null continuous .

functions with piecewise continuous derivative o [a,b],

which satisfy (3.5) and the initial condition y(a) = 0, then

J(y) will have a positive minimum. Furthermore, the minimi-

™,
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'2inglfunbtion“w111fbe a solution of (3.1) for which y(a) =

y(b) = D. Observe that (3.5) is actually a normaliZétion
condition in the sense that if u is any non-trivial
function in Dl[a,b] for which ﬁ(a) = 0, we can always
find a\positive constant a such that the function y =au

will safisfy G.5). This is equivalent to finding a humber

a such that |
b , |
\/L'Zd “lh Faz 2,x)dx.

a

However} since thg left side is positive and the right-sidé

is a continuous function of a which, by (3.1lc), tends ton)
for ¢ -+ 0 and to » for o =+ o, a normalization constant can
be found, .

First we show that J(y) is bouﬁded from below by a

positive number, Indeed, the assumption that y = 0 is

essentlél in that y = O corresponds to the trivial solution .

with J(y) = 0. By (3.1lc),

G(t,x) = /geLsfeF(s,x)]ds <t 'eF(t,x) seds,
‘il.e., |

G(t,x) g (1 + e)'ltF(t,x). o L
Therefore,

tF(t,x} - G(t,x) > e(1 -I.-ue);lt_F(t,x),' |

| and, by (3.3) and (3.5), we have

o
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b
1) 2 e+ )7y 2ax.
a

Since the integral must exist and be non-zér;j for the
problem to make sense, J(y) is bounded from below.

We may‘ further assume that

b ’
fy'zdx < M<K o,

- d

where M is some fixed constant. Consequently, by ele-

- mentary considerations, C is a compact family; hence, by

Ascoli's lemma, C contains a subsequence’{y |} which con-

verges uniformly to a continuous function 'y-o(x), i.e.,

nl_]'__.‘-’moo.J (ﬂy:n)- =N (a ;b) = 118f J(y) , amdn 1}>mooyn (x) = yo.(x) .

= )\(‘a,b) it remains to be

&

In order to show that -J'(fy-'o)

shown that yoeD'[a,b] and that

b | o7
l&mfy'z(x)dx ?fy'z(x)dx:;
Toeey) TN x 0
a
By the uniform donvergence of {-yn} , yo.('a) = yo(b) = 0.

For y e {y_ }, we def;i)e another function u as a solu-

tion to the linear differential system

~(3-*6) u' = -ay(X)F(yz,X),ﬁ(a)-= i) =0,

where the posiltive constant a is to be determined by the

normalization condition /
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e
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b

» b | -
_€3.7) \/;.de = u2F(u2,x)dx;
- a V ‘h. . »

a

As previously.indicated, such a constant can always be

- determined.

By (3.5), 13.6), and (3.7), we have

b b - b
azg/;zF(yzgx)dx)z = g/;u"dx)z = ( y'u'dx)2
a a a |
b b
< (Jurtan) (Jy2an)

a ,

a

b " b S

2
([y F (2, x)dx) ([ulF (o2, %) dx)
. a a

i.e., ‘

b ‘( b )
| a%/;zF(yg;X)dx g.k/LZF(uz,x)dx,
a - a i
Moreover, by (3.6) andi(3.7);'we obtain

{/LZF(ﬁZ:X)dX)z = (fu'?dx)?
a ‘»

I
c.
o
>

—’

b )
= (JuyF(y%,x)dx)?
-a

b b
< (fu?Py% a0 (YRG0 ) .
a a _ ‘

These last two inequalities simplify to

(3.8) . u2F(u2,x)dx < uzF(yz,X)dx.
a ) |

, a
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Since F(t,x) is an increasing function of t, it

follows that G(t,x) is convex and we can then write

B C(3.9) 6(E,) 2 G(tg,®) + (£ - £)F(E LX),

Using this we obtain — l.

b b b . |
 feptoax [oo e + [(? - yHreEmax. ”
ﬂ

5 Combining this with (3.8) we have ?

b b |
]

Jidr? 0 - s mlax < JIy%RGE0 - 66701, )

-

a - a “ j

which implies in view of (3.3), (3.5) and (3.7),

@ (3.10) J(u) < J(y).
This shows that the sequence {yn} may be replaced by a J
minimal. sequencé {un}, where each u_ -is obtained from ]
& : 1
| y, by means of (3.6) and (3.7). In additionm, since Y,
converges uniformly to a continuous function, we see from |
. (3.6) that un"'also converges uniformly to a continuous :
ﬁ : | - |
o ». function. Consequently. uﬁ and‘un tend .to continuous ;
limitsf If we write lim u_ = uo, then u, € Cz{a,bl and
) . is itself a solution to the minimal problem, i.e., ;
| * ) lim J(u_) = J(u) = A (a,b). _
n—+w RN
ﬁ °,

By writing

: ' . . . T R . v’)r »
; ; T
K L 2 S -
2 | x5 Y !
5. .
"

/ dX "
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1
-
2
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Vs 4
| , (/«'“‘": | )
. . . § : : ; i K 3 '
‘we find that if u = O then | - | L
1 g

3 | T R
Z(X) = é/h'dX)z_g. B(x - a). " : . b
a . : t

v - A :
“43' . P

In view of (3.7) and the fact that B>O
b

(3.11) 1.g'ka -a)F(B (x - aLx)dx,”k
a

which implies that B has & positive lower limit g
Hence | .,

M2, . L
;ug dx > 8 : ~

and u_ is indeed a non-trivial function. Furthermore,

uo(x) must be a positive concave function of x in [a,b]

if uolis‘further normalized by.the condition ué(a)-> 0.

This is a direct consequence of the fact that (3.3) and

(3. 5) remain unchanged if y(x) is replaced by -y(x). As a
result, we only consider the subclass of C con51stlng’of l
nonnegative functions. Thereforel'by'(3.6),'w"(x)g 0 and ’

X

u'(x) = fyF(yz,x)dx > 0, | -
X ,

4 i

Where xo-isza.pbint in,[a,b] such that u'Qx&% = 0.
: | )
Fiore OVer 9 . . O ! ) ‘ | Vy @%
G X

U(Xy’=¥/h'(x)§x;> 0 e “ . , . o
a ‘ ) | N "
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Y [u'%dx = o2 uzF(uz,x)dx,”// I | | o

. (3.6) is applied to y = u
' admissible function, and J(u) S_J(uO) = A because of the-

- minimal property of u,. Consequently, we must have equality

-26-

which proves our assertion. . : ;.

- Now in (3.10) equality is attained only if y and

u are identical because of the manner in which the

Schwarz inequality was used. As a result, (3.6) shows
2.

that y is a solution of u" + uF(u,x) = 0. Since u(a) = N

U(b) = 0 and | | | ‘|
b

Nla .

a - a

PR

a comparison with (3.7) shows that o = 1. Hence equality

is attained in (3.9) only if y is a solution of (3.1)
such that y(a) = y(b) = 0. Now if the ttansformation

o> then A < J(u) since u, is an ,

in (3. 9) which proves that u (x) is a solutlon of (3 1).

We now state this result as a theorem.

THEOREM 3.1 Let C be the family of non-null p1ecew1se ;

R

dlfferentlable functions on [a, b] which satisfy the nor-

malization condition (3. 5) and the 1n1t1al‘condt10n y(a) =

.!;'

1f J(y) is the functional defined by (3.3), ‘then the problem

C
is solved by a solution y(x) of (3.1) such that y(a)

min J(y) = A{a,b)

y(b) = 0 and y(x) > O in (a,b) and the minimal value *(a,b)

is positive.

e

~ We define r(a,b) to be the characteristic value of

\

e B

AT
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(3 1) and the boundafy condltbgns y(a) y(b) = 0. The | ' ‘]
fpllow1ng propertles will characterlze)k(a,b).
'THEOREM 3.2. ' ' R
(1) If (a' b') C (a b), then » (a, b) 37\(3 b'),_
(ii) a(a;b) =« for (b - a) - 0;

(iii) »(a,b) is a continuous function of both a and b,
Proof: To verify (i), let u be the minimizing function for
J(y) on the smaller interval [a',b']. Define v an admissible

function as follows: v = u for x € [a',b'], v = 0 for

x € [a,a')U(b',b]. Thus, A(a',b') = J(u) = J(v), but

J(v) > a(a,b). ~ w )
For part (ii), let & = (b»!@a) and use the inequality
(3.11) to obtain

b " - b
1 <« x/kx - a)Fp(x - a),x)dx < 8\/%&36,x)dx
a | | |

a
where g 1is defined“ds before and y is the minimizing
function for J(y) on [a,b]. If B were bounded from above,
then thetre would exist a constant M such thatp < M for
all & € (O, 60) for some 54 > 0: We would then have

ate
1 < Bk/iF(Mdb,x)dx A
. | - o o =

for all &5 € (0,6,) Wthh is absurd Therefore,p — o for

% -0 and because J(y) is bounded from below by’

|

G(l‘+ E)-{/\y'zdx = g(l + e)-lﬂ, | o : N uu | -ht

the result (ii) is established..
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For (iii) it is sufficient to show that M(a,b) is
a continuous functlon of b, because the argument'w111 be
the same for the 1owef limit a. For 31mp11c1ty set a =\@’

and let y denote the minimizing function for the interwval
-1

§

[0,b]. Let O < b < b, and write t = bb' On the in-

terval [0,b'] define the function u(x) by u(x) = y(tx).

Now let w = au and determine the constant a such that

b' bt -_ . ~~—
u'“dx = uzF(uz,x)~dx.
0) -0

This is equivalent to

b b
t%/;'zdx =\/§2F(a2y2,t-1x) dx.
0 0 -

Since F is monotonic in its first argument, and contin-

R

uous in both, this shows that ¢ is a continuous function of

0

t for t > 1. The normalization condition (3.5) with a

shows that a—1 for t—~1. Therefore |a- 1| can be made

arbitrarily small by maklng (t - 1) small i.e., by 7
taking L' close to b. i
By assumption y(0) = y(b) = d, and thus by definition

of w, w(0) = w(b') = 0. Hence, w is an admissible function.

By Theorem 3.1 we have

20,b") < I(w) = [[w'? - G(wh,x) ldx.

[P

o]

By changing the variable of integration from x to tx and |

1

-observing that w(x) = y(tx) we obtain
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‘; b o ,
A(0,b") < el f[aztzy'z - 6@%y?, xt™1y1dx
, 5 T - ,
o L, o | | a
where y = y(x). Since G(t,x) is continuous in both vari- L
ables, and t—1 implies a—l, the right side of the above
can be made smaller than ‘ |
b - - |
f[y'z - G(y%,%) 1dx +
0
for an arbitrarily small ¢ by taking b' close enough to
- b. But the last expression is just A(0,b) + ¢. Property
(i) shows that 3 (0,b) < 2(0,b') and thus we have shown
that k(O,b) is a contingous function of b. o s
THEOREM 3.3 Consider the equations
(3.12) y" + yFi(yz,x) =0, 1i-= 1,2
where Fi(t,x) satisfy the conditionS'(3.2). Let‘xi(a,b)
denote the corresponding characteristic values. Then if
Fl(t:x) < Fz(tax)
for all positive t and x ¢ [a,b], then
M (a,b) < %, (a,b). S o
Proof; Let u denote the minimizing function for Jl(y) i
and let the normalization constant a be determined by
* [ B
f u'zﬁdx = f uzFZ"(azuz:X) dx. B S .
- a . a . V | |
Then the function w = qu is subject tQ“thevﬁormalization
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(3.5). Since w is an admissible function we must have
| - b |
T N 12 2
xz(a,b).s\/}w - G, (w*,x) ]dx.
a

Since F; < Fz,/égfinition (3.4) shows that.G1 < Gy

Moreover, the convexity condition (3.9) yields
| b ‘ b
"\/El(azuz,xbdx.2\151(u2:x)dx + @ - 1)Ju’F) (%, x)ax.
! v a a a

| Putting these resﬁlts together leads us to the conclusion
- ,_ - . N |
mz(a,b)|g a%[hizdx -\/bzﬁlzuz,x)dx

S_, u Fl(u ,X),dX ‘fGl(u :X)dX = )\’l(a,b)
4 . a |

where the‘last simplification is a result of the normali-
- ’ zation of u. ’ | | ™ 4
- This'result,'it should be noted iS'in‘thefnaturerf a
comparison theorem similar to that for the eigenvalueé-of

a linear differential system.

- ah 1R
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IV: THE CHARACTERISTIC VALUES A

In this section we continue our investigation of the

equation - - “

(4.1) y" + yF(yz,X) = 0,

e
™)

» |
where as before F(t,x) satisfies the conditions..(3.2). Our .

discussion will demonstrate a significant distinction be-
v . .& 5 .11

tween solutions of (4.1) and the linear equation (1.3).:

We have already mentioned in Section II that on any inter-

~

val [a,b] and for each positive integer n, there exists

[

a solution of (2.1) such that-it vanishes at the endpoints

and n-1 times in the open interval (a,b). The same re'sulit is

true for (4.1) as well.

We shall proceed to formulate the problem in- the follow-

-

ing way. Let w(a,b) denote any partition of [a,b] such that

ol

7(a,b) contains nt+l distinct points xj, i =/0,...,n and

Xo =.8, Xn = b. Let Y3 be called an admissi vl@ function if

AN | | - -0 - 0. -
y; is\ in D (% 0%y 1o 3 (% q) = 9;(®) = 0, bue y; = 0,

satisfies the normalization condition

. el ~
X % X} ‘ AJ

and y.

o B i ,
(4.2) fy'zdx = fyzF,(yz,x)dx.

Xi-1 *i-1

9

9

If x € [xi_l,xi], write yi = ﬂ{rf éefing the nth character:-

s q

7
g \\

| ~ b . |
(4.3) N, = .minf[y'z- Q(yz,x)]dx,
»a * . .
| ~

- Ve




&
. —,\_)
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where for each partition T, y ranges over the class of all

admissible'functions.
| By Theorem 3.1 we know that'for ah& partitidn m(a,b) a | |
mlnlmlzlng function for (4.2) must 001nC1de'w1th the soultion 'T' | E
of (3.1) in each interval [xiel’xil such‘that y vanishes at %
Xd-l and x,. What we shall demonstrate is that the integral
has a poéitive lower bound énd that:the partition for which
- (4.3) attalns 1ts minimum value is such that the correspond-
ing solutlons of (3.1) combine to form a C2 solution of
(3.1) in tha 1n§ervg1 la,b]. This solution will then vanish | ‘E
n-1 times in (a,b). o
By the previous remarks it is .sufficient to show that
thére exists a Rgrtition wb(agb) for.which (4.3) or equi-

valently the expression

q-_.il-_- 'R

n

AFx = z)\(x rl,X) |
1 s N

attains its minimum. By Theorem 3.2, part (ii), A\* is a

continuous function of the variables X1see0X 1. Also by

the same theorem the variables éi must be bounded away from .- ;J

"

each other for any sequence of partitians for which A\*

tapproaches its minimum, Cldariy, just as J(y) is bounded
below by é’positive constant, sé is A*. Thus the minimum
problem has a solution, call it yn.‘This fundtion,‘as |

already~pointed out, coincides with a solution of %(3.1)

on each interval and vanishing at the endpoints. Hence, -the

ST A i ATk e it e v = A S i S e e o

solution Yn has n-1 zeros ih (a,b).

We now proceed to verify that the solution to the

I D STty RIS
i, A o o i T

b
R
;
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. | - | o
ﬁroblem is a C“ solution of (3.1) on [a,b]. Since the sign
ity conditions nor the value of the functional J(y), we may
therefore assume that y changes 1ts sign at each of the
points X, (i-= ,..,n -1). Thus the extremal functlon'w111 be

a solution of (3.1) if, and .only if,

(4.4) 1lim y'(x) = llm.x'(x), i=1,..,n-1,

X = x7 X — X}

To this end we shall show that if (4.4) fails to hold at
some point, y could not be a solution for the minimal prob-
lem (4.3). |
To this end we suppose that y Cx ) = '(x+) and set
\
X; 9 < P, xl = ck\ond Xi41 = q to 51mp11fy the discussion.

We ma also assume\without loss of generality that y > O in
y > y y

(p,c) and y < 0 inl (c,q). Let & denote a small positive
quantity and define ﬁiih;;he following manner: let u=y
for x € [p,c-B)U(c+d,q] and" u = y(c-d) + (26) (x»-~o + 5).
y(c+d) - y(c-6)] for x e.[c-o,c+6]. Obviously u is a con-
- tinuous function in'[p;q] ano the linear segmént’vanishes

! where:e' is glven as a solutlon of -

for. x = ¢
26y(c-8) + (c' - ¢ + 5) [ (c+6) - y(c-B)] =

In‘order to obtaln a function that is subject to the

Normalization (4.2) we mﬁltip]y u by constanfs o and

in the intervals [p,c'] and'[c',q]‘respéctively , So that

| c!' c!
(4.5) L/wu'zdx = | UZF(ozuz,x)dx,
P - P -

......
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.1nte;va1:(c36,c+6) and observing that y =

I

q. ' q , '
\/\ 'zdx = k/‘u F(P2 ,X)dx. s

c! ' c!

Thus the function v-bbtained By writing v = ou and v = pv in
the intervals [psc'] and [c',q] respectively will be normal-
ized by the condition (4.2). Furthermore, the function ¥q

obtained from y by substituting v for y in the interval [p,q]

is an adm{ssible function for the problem (4,3) on [a,b].

Since G(t,x) is convex, we Héve.by~(3.9) that

/

q . |
f[\?'Z - G(v?,x)1dx gﬁv'z - 6(y4,%) - (v2 - y2)F(y%,xD1dx
P o p -

¢ o
q ) 5 | q
= J5PP6%0 - 62 max + fiv'? - v2r(y?,m) Jax.
“ P | p
Thus, by (4.2) and the definition of J(y),
q
I6P < IO+ [1v'? - vPRG2,0) lax,
P

-y

O €quivalently

42

(4.6) 3Gy < I + F1ur? - uwr(y2, %) )dx

et

We intend to show-thét the sum of the last two terms in

the above can be made negative by taklng b suff1c1ent1y

small. By omlttlng the negatlve term of the integrand in the

[c+5,q] we obtain

'?3445,-
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b 7

? | -+ =0 | c -35- : j
; @) 3y < IO + o flwr? - PPl 0 1 + oFfurlax T
: - : P | . c-b

i

Qzé' c+5 . E
+ P%/\ 12 F(u ,X)]dX'+ P%/\'zdx. :J *
* ¢ |

Since y is a solution of (4.1) 1n each interval for which 

y(p) = y(q) = 0, we have
c- . , ‘ |
B \/EU'Z‘- ugF(ﬁz,x)]dx, = y(c-6)y'(c-b)

w  and

q _ __
f[ u'? - "u"-z.F'(uz ,X) Jdx

c+0 '

A I BRI ALY S P

-~y (etd)y ().

IR . SRR R 2

: From these identities and the fact that

¢ c - - 'ic
'2dx g’k/L'zdx ;+ ng' - 1] u'zdx,
c-b | c-0 . c-0 P

. - Y
c+b c+d _, c+5

pz 11 de < Ju Xm + pz - 1'1.1'2

C C

dz

dx,

(4.5) becomes

(4.8) J(y) < () + y(e-8)y' (c-8) - y(cHd)y' (c+0)

. C# " -Dy(e8)y (ewB) - (pEr1)y(ct)y! (cto)

S R R PR

c+0 - o | c+b

"""

: f’zdx+ [Ip -1| + Icz-ll]fu' dx

c=-0 | | | - ¢c=b

A S I R S R Y.

X Mg oy
a ol T i
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h~From the differentlal equatlon (4. 1), y(c) 0 implies
"(c) = 0. Thus by Taylor's formula , y(c+6) =y (c )+ 0(6 ),

y(e-B) = -by'(c7) + 0(8”), y'(c#5) = y'(ch) + 0(62) and
y'(c-8) = y'(c~) + 0(52). Since F is a ;ontinuousgunction  ;
of both of its arguments and since c'— ¢ for 56— 0, (4.5)
shows that bot‘h‘G2 and.pzﬂ-l for 5 =+ 0. Thus (gz - 1)y(c-5)
y'(c - 8)'and (p2 - Dy(c +'6)y'(c + 5) are 0(6). From the

definition of the linear segment u(x) in [¢c - 8,c + B8] we

have
c+86 o | . ‘
f "Zdx = (26) " Ly(c +6) -y(c - 8)1% = sy (ch) + y'(c7) 1?2
c-5 - / » .
+ 0(63).

)
Therefore, the last term in (4.8Y is o0(6). Since
y(c-6)y' (c=6) - y(c+0)y' (c+6) = #6[y'2(c) - y'2(c) 1+ 0(53)

(4.8) reduces to

I(yy) <I@) - 6/2)[y' () - y'(c) 1 + o(p).
Now the assumption that y'(cj = y'(é-) implies that
-(6/2)[y‘(c+) - y'(c-)]2 + o(8) can be made negatiVe}byf
choosing & sufficiently small. Thus the correspondihg
function y;(x) will satisfy the strict inequality J(yq) <

J(y).. But Y1 is an admissible function for the extremal

.problém'(AIZ) and since y is a minimizing function for

- (4.2) we arrlve at a contradiction. Thus y'(c") = y'(c),

where c may-be 1dent1f1ed'w1th any of the partltlonfp01nts

X (i=1,...n-1), we have therefore proved the follow1ng |

}A-fv

e %PI’E‘:

o |

_ QEHJ?;%’I;I =, = W,

1 ey
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result.

THEOREM 4.1 Let C, be the class of all piecewise continu- .

ous functions y vanishing at a and b and at least n-1

times in the interval (a,b)'and y subject to the normali-

) - zation (4.2), then

min/(y'? - 6(y%,0) ] dx
a «
has a solution y_ with continuous derivative "throughout

Ap» ¥ € Cn

[a,b]. The function Yn has precisely n-1l zeros in (a,b)

and is a solution of (4.1) for whixh y(a) = y(b) = O.

The following corollaries follow quite easily.

COROLLARY 4.2  The characteristic values A, are strictly

increasing with n.

Proof: Lét y be the minimizing function for (4,2) and

define a function u(x) = y(x) for x ¢ [a,xn_l] and u(x) =0

Y
; for x ¢ [xn_l,b], Wherg X1, .,X _jare the zeros of y(xJ*in
§ (a,b). Now ufx) #s an admissible function for the extremal
gh/ | probtem (4.3) corresponding to the index n-1. Thus it
| folldws that
’\b | Xn-]_ | ‘_ ” '/ |
A < 107 - 62,0 lax = [9'2 - 6(2,x) lax .
ol = .
. | | b |
l | = 7\;;n‘ -f[y'z - G(yz,x) Jdx.
| *n-1
é . o By the estimate for the lower bound of J(y) applied to

- the interval [x__,,b] we have




b b |
f[}"z - G(yz,x)]dx > e(1+e)-1 y'2"dx>0,-
%n-1 - - Xh-1

ISRuT

— and thus conclude that kn-l < Kh.

COROLLARY 4.3  The characteristic value'ln(a,b) has the.
following properties: |
(1) '%n(a,b) 3 %n(a}, )//Whenéver'(a,b) C (a',b')

(ii) 7\n(a,b)—*oo for' b-a — O;

(111) A _(a,b) is a continuous function of both a and b.
This result is a trivial consequence of Theorem 3.2.
It is well known [9] that if N\ is the nth.eigen-

- value of the linear Stutrum-Liouville system, then

e 7 2
1im }ngn = const.
n = o .
- n
/

And, a general comparison theorem for the eigenvalues of
a linear system exists. These familiar results should be
compared with the folloWing theorems which describe the -

asympotic behaviour of the characteristic values %;g

THEOREM{ 4.4 If A, is the nth characteristic value of the

problem (4.3), then
1im A /nz = @,
n—+o o
and the exponent 2 is sharp.
Proof: Let y be the miniﬁizingwfunction and'xl,..,xn_l

the zeros of y. on (a{b). Then.for-x € [xi_l,xi],

N

Q
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A ‘ Xi Xi
P = (ya? <y -oxg )y [y
i1 | *i-1

By the normalization condition (4.2), we find that

2y
| . 2
1< (xi - X‘?}}_l) fF(y :X)d?{:

X541

and consequently

X,
1 |
\/%(yz,x)dx.z, (%5 - x5 7).

X,
i-1

By Holder's inequality, this reduces to

\a
\ .
For a positive §¢nstant, ps the convexity condition (3.9)
becomes <‘
)
b

b /b, b |
2 Fo. 2 . 2 2
Jote?max 2 et e + [ - YIRGERex, S
a -~ a - a " ~
which in view of (4.2) becomes

b b
Jiy'? - P e » o2t max - [0, ax.
a | o a a ) N

Since y is the minimizing function, the last inequality

~

and (4.9) imply that




[N

. - b
| xnnz'pznz(b - a.)-1 —\/&(pz,x)dx.
a

ence, we conclude that lim inf kn/hz Z.pz(b - a). Since
p\ is an arbitrary constant, it méy be taken as large as

we wish, thus proving our assertion.

To show that the exponent 2 is sharp,'we‘merely,
calculate A_for the system i ]

/

(4.10) yn+ y2oHL

= 0, Y(O) = Y(b) = 0.
Our result will show that

(4.11) A = [m(ot1) L/ (4p 20271 D /09y -1

where i
B = f (1 - t2m+2)dt. Q‘ |
S S

s ;
| | | [

Since mr may be taken arbitrarily large, the exponent 2 is c

| I

the largest possible. / "{
To derive (4.11) let y be a solution of (4.10) for |

' A |

which y(0) = 0, y'(0) = a > 0, then i
) ] !

4.12) y'% + (1)~ Ly2m2 _ 42 j

which implies that y is a periodic function of x,

| : oscillating between the limits + M, the maximum and mini-

]
m
1

mum of y respectively, determined by the equation

| M2TH2 (m+1)a2.

| | T | | ‘
- Let x =T be the lowest positive value for_whieh;yz(T)f= N@,.

e - R ' , - P ey :




o

continuous functlon of the parameter-a, the zeros move to

the left continuously as a2 increases. Thus there is a

unlque solutlon of the~eystem (4.10) with n-1 zeros in

(0,b). By Theorem 4.1 this solutlon is identical with

the minimizing funttion of (4.3) and we obtain

-1y2n+2]dx S

if y is the solution in question.
-
Since the equation in (4.10) is unchanged by a trans-
lation we find that y‘satisfies the identities y(y+T)

Y(x+2T) = -y(x), which simplifieés the expression for %n to

- (2n) f <m+1)"1 212 14x, T = (b/2n).
Using the normalization conditlon
T T
(4.13)\/&'2dx =k/§2n+2d
0 C
we can further simpiifyithe,above"expression to
. -1 [ ,2 PN
(4.14) o = 2nm(mt1) y'. dx, T = (b/2n).
| 0 - N

- Upon integrating (4.12) from O to T, we find that

T T |
fy'zdx + (mtl) -‘]:[yzm'l-zdx = azT,
0 0 S

-,

whieh by (4.13) reduces tg;

7,

AT "erff ’ .
VY e h ' "“,.‘,' . -
v .' . ‘f. N'ﬁ
TR . =41-

"..',', . ' Tt . ' »
Tk )— \4\», ."..- .

‘then the zeros in (0,®) are at 2T, 4T....Slnce y is a

i#




+
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(4.15) fy'zdx = (m2) "L(m+1)a’r.
g7

" } yiva
*{; ot

To compute a, we observe that y is incfeasing in (0,T)

1.
o .
"

and thus, by using (4.12), we have
-1.2 -1 2
7[«3 - @y ™) 5

R
[T
* 2

2042 _ 01y

Since m , we have by a change of variable

1 -
T - @) [(1 - 22 250 o (i) T

| 0 ,
N

Eliminating M between these expressions we have

2 1/ 'T-1]2(m1) /m

= (w+1) "M (1)

Combining this with (4.14) and (4.15) we obtain the

indicated value*for7\n

THEOREM; 4.5 Let Fi(t,x), i=1,2, satisfy conditions
(3.2) and let %n(,%g denote the respective nth characteris~

tic values of the systems,

(4.16) ¥ + yF(y%,x) =0, y(a) = y(b) = 0, i=1,2.

s gt e ey

If,

(4.17) 1lim Fy(t,x)/F;(t,x) =1
C < o °

uniformly in x, then

| . ' l  N
(4.18) lim 7\n/)\n'

n — oo
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Proof: Let u, v be solutions to the system (4.16) corres-

ponding to i = 1,2, respectively. Consider in addition the

(4.19) w" + (lfﬁ)wF(wz,x) = 0, -w(a) =~W(b) = 0,

’ . i
{ Y

where & is a small positive number and A is the correspond-
ing characteristic value. Let X 3%Kqs 00X be the zeros of *

the characteristic function u. If the constants a; are deter-

mined by the condition

X. ‘ Xo
1

i
\/\u'zdx = (1+6)\/qu2F(a§u2,x)dx,
*i-1 *i-1

then by theorem 4.3.
n Xl

m < Zf[a']?.'_u'z - (1#)6, (a%u?,x) 1ax

.j_xi_l

n xi
— 2 42 2.2 .\
o= }: jqaiu. Gl(aiu ,X) Jdx
1 %i-1

| n X,
T 1L ~
_, 9
+ _J\/}Gl(aiuz,x) - (l+6)G2(a§u2,x ]dx.
L% '

I?iné; of the normalization (4.2) for u and the convexity

-

~condition (3.9) for Gy, we have

X

i | |

2 1 2 2 2 ) h
Jjaiu -__Gl(aiu ,X)]dx ¢ _
i-1

)
1 X.

’
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Z f[af . (uz,x) - (af-Du?F (u?, %) )dx
; %, ‘ ,,,,. _ —
i-1 | |
='¢/1u2F1(ﬁ2,x) - Gl(uz,x)]dx = )ﬁ,
o
and thus -
| n  x,
: L 2.2
(4.20) A < A' o+ Z f[c; u?,x) - (146)6,(a2u?,x) Jdx.
1 X, |
i-
By definition (3.4), we have *
3 ,
G (a u? ,X) - (1+6)G (a x) =\/}F1(t,x) - (1+6)F2(t,x)]dx.

Q

Moreover, from (4.17) we see that the integrand becomes

negatiVe for t > M2, where M2 is a function of 6, hence
'S
6, (aju’,x) - (146)6, (afu®,%) ¢ [F,(t,x)dt = G, (%) .

§
Using this'in (4.20) we get the estimate
N | ¢
(4.2L) M < A+ fG (mz,x)dx.
n n 1 W
| a

Now let a = xo,..,xn b be the zeros of the nth charac-

teristic function w of (4ﬁ19) and let the constants bl*'f?bn’

be determined by the conditions

xv "xl]
1a ' 2.2
(4.22) _fw' dx = fw F, (b2 %) dx.
" | |
-1 X1
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According to (4.19f, we must have-

L
! | ' ,
1 i,
L/WW' dx = (1+6)\/“w F2(w ,x)dx,
! 1
*i-1 | ®i-1
and therefore |
. x
¥, 2 2 ) |
fw [F,(byw™,x) - F,(w',x)]dx > 0,
271 2 ‘ . )
X1 | o S
i-1 . ~ |
L . 2.2 L2 | | m
which in turn implies Fz(biw ,X) > FZ(W-,X). Hence we con- !
- clude that b% > 1. Now by (3.2¢), : :
| 2 2 | ’
| Fo(bjw”,x) > bIF,(w?,x),
% and consequently,,from (4.22) we have
'”(1+6)\/qu(W2 x)dx = \/WWZF (bzw2 x)dx !
' 23 2 ' 2ViT - J
%i-1 - %i-1
x!
| i
» > b%ek/\wze(wz,x)dx.
' 1
%i-1
‘Thereférég b§€ £;(1+6) < k, where k is a constant independent
g of 1. ’

. - . | — ' !
The function Wy defined by Wy biw for x'e [xi_%,xi]
has the normalization (4.2) for y . Wy . As a result, we

Y . "
can estimate b
N by !
‘ b n X+ -
2 ; \
)\;1' Sf[wi - GZ(W%,X)]dX = Z f[b]g_w'z = GZ(WZ,X)]dx
| 2 boxa |
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X !
l f
Z f[bfw 2 _ (146)G, (b2 2 %) ]dx + fc; (b2w?, x)dx. .
1 x! -1
Tx! '

By the convesity of G, and (4.22),_it‘follows that

i ox! | B &
\y 1 J
i& f[bfw 2 . (1#8)G, (b2w”,x) | dx
1/x!
i-1
‘ _ Xi | ' a
2.2 ' 2 2
g_z f[blw - (].+6)G2(W”,X) - (l+6)(bi-~1)w2F2(w2,x)]dx
1 x! £ '
b | ._ ‘~ ”‘
= Jlw? - as)e,wl0lax = A

a
Hence, we have

Xl

i
(4.24) A< + B }: JF(S (b3 2,x)dx.
x

‘}he convexity condltlon (3.9) for G, yields,

upon setting
= 0O=and t = b2 2

G(b 2, %) < bsz (b22 x) .

Using (4.21) and b% < K we‘obtgin

Finally, the estimate (4.24) becomes.

”%g < Kh + Bkk/ww'zdx.

. 9 [ o
- a A b ; 5

-




|

Now | |
IGY > €(1+€)f{/by'2dx
. a

so if we identify y with the minimizing functibn w for (4.19)
we find that S

”

[ wtax < (e Th,
a o

T

or finally,

XH < xn[l + 6(1+§)€-1].
Combining this with-(4.21) we find that

lim suppx;/xé < 1 + 6(1+e)é'1,

n — o S
and since & can be made arbitrarily smallzand_e'1(1+e)
does not depend on n we must conclude that

. " ! ‘ 1
, lim sup 7\n/?\n < 1. s,

- 00
n .‘ ‘ .

By interchanging the r@les-bf Fi and , the same arguement

will yield

lim sup 7\1,'1/ 7\;.: < 1,
n — o .
which completes the proof of the theorem. |

This last result shows quite easily that if pk(x{}are'
continuous and nonnegative on [a,b] for k = 1,..,m and if
pm(x) is strictly positive, then the characteristic value

&

of the system




pe——"

Ryt 0 S
1

y" o+ ipkcxwz“”,.. = 0, y@& =y®) = 0,

1
is completely aktermined by the function pm(x); One can

also establish that for large'n

N, = AnZ(l+1/m)[1 + O(n-Z)]k\

where A is a constant and7\n is the nth characteristic

value of the system

y(b) = 0.

'+ ey 7 0, y(a)

_48-




V. A SINGULAR PROBLEM

The problems considered thus far have all been of the
nonsingular type. In thié sectionﬂWe shall present a singu-
lar problem for which the variational methods ‘have also
proved useful. The problem.ih question is the existence of

a continuous solution to the equation

(5.1) y" -y + xl-kyk

O, 1l <k <5 3 o

on [D,w) which vanishes at the'origin, x =0, and as X - o,
The basic idea is again to miniﬁize an aprropriate function-
al under a suitable normalization condition. However, one
difficulty which arises is that (5.1) is singular at both
ends of the intervél. Consequently, the results of Section
III do not apply and the problem must be dealt with sepa-
rately. .

The interest in this equation arises from the fact that

' 7
ggherically symmetric solutions of the 3-dimensional partial

differential equation Au = u + uz satisfy the ordinary

2

differential equation u" + (2/x)ul--u - u 0 which 1is a

special case of (5.1) for k = 2 under the transformation

y(x) = -xu(x).

| N\
Consider the problem of‘minimizing the functional

2

1 :
(5.2) J(y) f(y +y'")dx ,,)
| >
over the class C of all nonnegatlve continuous functions
on [ 0,0) which vanish for x = 0, and are normalized by

. | \

the condition } ‘ )

A /

{ ' " . . i
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(5.&) \/wyk+1xl-kdx = 1, - B -
o o
We shall show that this variational problem nas axsznnega-

tive solution y which vanishes at both ends of the ‘interval
and that except for a multiplicative constant, y is a solu-
tion of4(5.1).

We note that a necessary condition that the variational

problem have a solution is that y satisfy the Euler-

Lagrange equation, which'is (5.1) except for an undetermin-
ed multiplier. , S
Befofe proéeeding with the existence proof, we also note
that unlike the classical Dirichlet problem, the existence
of the integral.(5.3) need not be assumed as we shall now ;
show.
LEMMA 5.1. For k < 5 and y(x) in C, the existence of (5.2)

implies the existence of (5.3).

; Proof: Let - <
5.4 £2® = [6P+yDHax,  (£2®>0)
- 0
Since y(0) = O we have
we he )
5.5 y'® = ([ y'an? < x [y?ax ¢ x£2®)
0 | 0. |
X X
5.6) y'® = 2 [y'ax ¢ [6P+yDax ¢ £
0 o 0 |

For X> O, y in C and y' square integrable on [ 0,x)

L
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;X X - X |
.j%y'z + (y/2x)2]dx -r/;y'/x dx
o 0 o) |

= Jiy'? - /2wt - P

o
N
<

]
<
N
~

N

>
NG
N
Q.
e
]

X
< f[Y'Z - (1/4x%)y?1dx
0

from Which we conclude that
. X X |
(5.7) k/wyz/x2 dx < 4L/\y'2dx.
0 0

Furthermore for X » 1 and k < 5 so that
X

| . 3
f Lokl ¢ gy f (k-1) /2 o2dx
0 0

 ff” < fk'l(x) R/kyz/xz)x(k'l)/z dX +.  f”'
. 0 | i

X
< 7w f(y.z/xz)dx + fk+i(X)
*

< seftlixy .

Hence,

X ~ X
0 [ -

= Ve

~ /
Since the right side of (5.8) exists for all X in [0,),

the preof of Lemma 5.1 is complete.

In view of the inequality (5,8) and the hormalization




condition (5.3), the functional J(y)'necessarily has a

positive lower bound. If we set

(5.9) A\ = igf\ J(y), > 0),

S

then there will exist a sequence of admissible functions

{y,} such that
(5.10) nlgpwJ(yﬁ) -= 2\,

From (5.10) we may assume that the sequence of numbers
J(yn) is uniformly bounded by a constant bZ. By (5.6),
yﬁ g,J(yn) g.bz; Furthefhore, for 0 ¢ X1 £ Xy < o

» |yn(X2) ) yn(‘xl)|2 N Q/\y'dx)z < (% - Xl{/\Yfde
Xq x.1
/.:<. bz (Xz - Xl) .

Hence {yn} is a compact family and by Ascdii's\lemma,

€

there exists a sequence, also to be designated by {yn} ,

...,which converges uniformly to a continuous function y (%)

in any finite interval [0,X]. Moreover, this sequence has
property (5.10) also. \T‘

We shall now proceed to show that for some positive
constant y, py(x) is a solution of (5.1) for 1 < k < 5
such that y(0) = y(») = O, énd that for 1 < k < 4,
%?2;5(X)/k is finite. fo this end consider the linear differ-
entiél system - |

Y

(5011).63.- Vo ¥ ‘?"nxl-k’yk 7 0, v (0) =v () =05

A

ok e N e L A T LB et T T D s
. — = — - S e —
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The following estimates for p(x) and q(x) will now b
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\

where the positive constants a  will be determined later.

If (5.11)7has a SOIution, we‘can write it in the form

(5.12) v_(x) L/\g(x t)tl ek (eyat,

- where g(x,t) is the Green's function for the differential

~operator ‘L(u) = u" - u with the boundary conditions u(0) =

u( )‘= O;;Thus, g(x,t) is the function defined as follows:

-(.5..13)' g(x,t) = e * ginh t 0Lt x

g(x,t) = e ~ sinh x t > x.

We first show that under the conditions imposed on Yy
v defined by (5.12) is in fact a solution of (5.11). For

simplicity write a_ = 1 and (5.12) as follows:

(5.14) vn(x) = e % p(x) + q(x) sinh x,
i ’ g y
where
o ' X
- 1- k
(5.15) p(x) = &/\81nh ty, (t)t |
| 5

o0

(5.16) q(x) = L/\ -t k(t)th* dt .

r
LB

\-_./\‘/

established.

) ™ e

(5.17) q(x) < biglkemx

(5.18) p(x) < 4bkx3'k/2 cosh X, k<5

N /
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(5.19) p(x) < M+ b*:KeX, M a constant, k< 5, t 3 2(k-1)

k

(5:20) q(x) ¢ 5b, kg 4

2-k/2,

(5.21) ‘q’(x) < bk(l + 4 x , | k > 4

k 1-k

and t77% ¢ x1°K for k> 1, (5.17)
2

Since y_ (t) g,b

follows. Now yn(t) < tb” and sinh t < t cosh t, so for k < 5

3

p(x) < bk-zcosh xl/\(yﬁ/tz)tB'k/zdt

-

X

i i ‘ .

b3 k/zxsk/zcosh xg/}yn/tz)dt,
0

<

and thus (5.18) follows from (5.7) . From the;ideﬁtity

X

P = p(x) + | t'sinh £ K

b'Y
o

dt, 0 < X5 < X

we obtain
X

p(x) < p(x) + b /2&1\ el Ketqe,

If we set X, = 2(k-1), tl-ket/z.iS'an increasing function for

/

t > 2(k-1) and we have

X
I8

p() < p(x) + (0F/2)xlKeX/2 [t/ 2

\

o)

Using (5.18) to estimate p(x, ), (5.19) results. Writing
8t %{" w“‘},f
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q(x) = \/wtl’ké'tyﬁ dt + q(1)

| we find that since q(1) g'bk by (5.17)

1
q(x) ¢ bX + ibk'z%lky§7iz)t2'k/7 dt .
' X

2-k/2

Since t <1 for k {4, (5.20) is established as a .

result of (5.7). However, if k > 4, tz"'k/2 g_xz-k/2 and |

thus' (5.21) is verified. | | %
By using these identities we will show that vn(x) defin- :

ed by (5.14) approaches zero as X 0 and x+w. By the

esgimates (5.18) and (5;20), the estmate for vn(x)'froml

(5.14) becomes

i

\' (x) < 4b 3-k/2 cosh x + 5bK sinh x, 1< k < 4.

If (5.20) is replaeed by (5.21), the corresponding

estimate is

k. 3-k/2

Vn(x) < 4 cosh x -+ bk(l + 4x27k/2)sihh>x,,k.§ 4.

These inequalities imply thatrvn(x).+ O for x - 0, pro-
vided of course 1 < k < 5. Now if p(x) and q(x) in (5.14)
are estimated by (5.17) and (5.19) we have

Vn(X) < Me ® + Zbkxl-k. | - "

\

Since Md%es not depent on n and k > 1, v.(x) > 0 for x » w.

From (5.14) we calculate the difference qﬁotient )

| [v (t+h) -V (t)]/h ‘take the limit as h - 0 and find

\ | —
that v (x) ex1sts and is given by -
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(5.24) therefore implies

~.

[fz(x))- 5a_/2] < 25a. / 4 +v_(X)v!(X).

Since vn(X)vé(X)L* O for X —- 0, we have established the

existénce of J(y). Moreover, by Lemma 5.1

U n

O

exists so that we may choose a_ in such a way that
(5.26) le V§+1 dx = 19
0

The riﬁbt side of (5.24) will therefore be bounded by unity,

. from which we derive the inequality

| Y 22
(5.21) J(v,) g'l/}vn tvax < a
0

Multiplying (5.11) by yn(x) and integrating from O to w:iywe

have
1! — 1-k_k+1
\/}Vnyn vnyn)dx a, [x n  d
0 0

because vﬂyé tends to zero for x - 0 and x -+ « (in the

= oK/,

former case we use the fact that v_ y. = O(xl/z));

“/n
In view of the norimalization of y, and the definition (5.2)
’of‘J(y) we may write [

)
Q\
l .

(5.28) J(v) + JI(y) - vy -ty = 2an. o
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vﬁ(x) = -p(x)e-x'-+ q(x).cosh X

The estimates (5.17) and (5.19) show that v (%) = 0 for '

X = o0 Slmllarly (5. 18), (5.20)'and (5.21) show that v (x)
1§\bounded near x = 0 if 1 < k < 4 and ¢! (x) =0 2- k/2

if k >'4. The estimates for'vsx) near zero lmply that

p L 4

(5.22) limv, (v () 0 1<k<s,

A similar computation shows that v"(x) exlsts and in fact
(x) is a solutlon.of (5.11) for an =.1, Slnce Yo (x) is

nonnegative in [0,0), (5.12) makes it clear that v (x)

is likewise nonnegative.

We moy establish the inequality

(5.23) J(v.)) < J(yn.).

i L

Mhltlplylng (5.11) by'v (x), 1ntegrat1ng from O to X, and

using (5.22), we have

; N : v
(5.24) fZ(X) = f(v'2'+ vz)dx

0)
. . /\ 1- kykv dx + v (X)VA(X)S

By'Holder's inéquélity we have

" (5.25) f -k kv dx S fl k k+1d )1/k+1 /‘1 kk+1d )k/k+1
o .
“\ | Thus.by (5;8)‘and the‘normaliZation conditipn;(5.3).we bbtain |
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Since J(vn).g_an we have by (5.27) that

Iy < Iy - Iy - ).

Since J(vn -yn) > 0, we have established (5.23), and in case
AN A then by (5.11) y, is a constant multiple of a solu-
tion to (5.1). | 8

In view of (5.27) and (5.28), we obtain the estimate

J(yn) Z,aﬁ + J(Vn,- yn) 2 a; and we thus have
— . _ | ~

Jv) < a, < J@,)-

Since vn(x) is ap ‘admissible function for the variational
problem, i(vn) >N+ Thus by (5.10), we obtain the limit

//relations

(5.29)‘nl39&J(vn) = lim.an = 1lim J(yn) l#wr Ao

n —>» n —* o

On account of (5.28), J(vn -‘yn)-+‘0 for n - «. If we set

J(vn - yn) = éﬁ and use (5.6) we arrive at the estimate
| | )

(5.30) [vy(xy -y ()| < e, lime = 0.

n — o
In the definition (5.12), we split the integratioﬁ into~the.
intervals [0,X] and [X, »), and use the estimate (5.17)

for q(x) and obtain
| X
e g [.1-k
lyn(X) - ank/\t g(x,t)yg,dtl
| 0]

= |y, - Va0 + anf e g (e, )y de|

e

N ’ J
~ : !
. - ERFRE

}.
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| < ly (X) - Vi (x)| + a_ sinh X bk -X xl'k

< € + anbk Xl-ku. ¥

As n tends to infinity, yn(x) uniformly approaches its limit
y(x) in [0,X]. At the same time €, O and an-*-K. Conse-

gquently -

yv(x) - %/q g(x,t)yk dt| < bkxl-k.

Moreover, in view of the fact that k > 1, we obtain for X = »

(5.31) y(x) = 'ﬁ/ll-kg(x,t)yk dt.

The function

¥(x) = 1lim Yo (x) = 1lim vn(x)

Nn — © Nn —*» o©

is then a solution of the integral equation (5.31). Since

the convergence is uniform for vn(x), y(x) > 0 for x + ¢

e

and X = o,

To show that y(x) is a non-trivial solution of (5.31),

multiply (5.11) by v_(x) and integrate from X to = to obtain

(5.32) \/}Véz +~V§)dx = a/ xl kv yk dx - v (X)v (X)
X
since %%T V (X) = lim v (X) 0. Now
X = o 1 X =

| X o
12 2 - 2, 2. 2 . 2 '
\/}Vn + v_)dx \/kvn tov_)dx -C/kvé + v _)dx
X ’ | 0 ,

N

X S
N - (12 A
b f (Vn + v )dx,
| 0
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‘and by (5.6)

o0

1-k. _k .. yk-1/2 J1-k
X" oy dx < [J(yn)] X k/ﬁvnyn dx
X X

< o1 D2 ¥ g ya6,)112

< L3 KD/ ylok

Where the last simplification is a result of J(vn) < J(yn).
(5.32) leads to the inequality ) |
% | | |
A g.\/}vn +v2)ax + a X K ay,)] v RV ().
5 |

With the aid of (5.24) we can write this. as

X
, 1-k_ = _k
A < anfx ViYy dx + a_X
0 |

1-k (k+1) /2

[J(y,) ]

If it were true that 0 = y(x) = lim vn(x) * lim y_(x), then

in the limit the above would become

A ¢ (K3 /241K

since A = lim::.zJ(yn) . But fhis is absurd because N > 0 and
x1-k |
y(x) is indeed a non-trivial solution of (5.31).

Since g(x,t) is nonnegatime in (O,»), y(x) is alsb.,By
differentiating y(x) from (5.31) twice Witﬁ*resPect to x‘we

find thaf y(x) is a solution to the differential system

L 1l-k k- u - |
y" -y + =K = o, - y(0) = ¥@) = 0. -

b —li

can be made arbitrarily small for X large enough. Thus
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é By the transformation u = xk-l y, we see that u satisfies
; ‘the system
u" - u + xl'kﬁk = 0, ﬁ(O) = u(w) = O0:
- We then have the following theofem,‘ | i
THEOREM~5°1. There exists a nonnegative solution of (5.1) g r
such that u(0) = u(@) = 0 for 1 < k < 5. Furthermore, if
: | J 1 <k<4, u'(0) is finite,
| As a result of the technique used in the proof, Nehari [8]
has also established a method of constructing approxima- } .
.ting solutions to (5.1)& In fact he has shown that k = 5
T - | is critical in that one cannot have a continuous soiution
of (5.1) for.which iim.u(x)/x = 0, e
| X = o |
|
| .




VI. CONCLUSION N

We_note that.in the proof of Theqfem.(B.l), 6n1y
slight modificatioﬁs are needed to yield a more/general
4 “ result, In fact, the conclusion of this Theorem is true
for a generél set of homogeneous boundary conditioms.
This is achieved by an—appropriate éhange in ghe ciass of
§ admissible functioh;'C,,and requiring the approximating

% , u defined by (3.6) to satisfy the same set of homogeneous

S sy am
s b e a
‘%'l At ":' .,

L
ﬁ';
J,’ :
[t
e,
o
it

boundary constions.

§ = | This paper, except for Section V, has been primarily

? related to the question of oscillation for the second

% order nonlinear equation. This is to bé~expected since

§ for each equation we have-investigated, yy" g.O'QB that

g 3 | every solutioh is concave. However, this variational typ

, of argument has also béen employed successfully by ang-{191>
i to obtain the existence of a unique convex solutionfy to

% | - the‘second order nonlinear equation

(6.1) y" - yF(y,%) = 0,

é where F(t,x) satisfies condtipns similar to (3.2). Ihw

é fact, he has Shown that there is only one solution of the

g class Cz[a,w) passing thfbugh any point (a,A), A » O, and

g decreésing monotonically in [a,~). The argument i?~quite -
% interesting in that he-first establishes the résult fér 4
% ' | | f;;%Eé subintervaig‘Lc?b] of [a;w) and then shows that/;

el
AT R

suitable limiting process‘allows.one to pass toethe limit

as the right endpoint b — «,

-
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R LY !

The extension of the results analagous to Theorem (3.1)
for a class of even order nonlinear equations can also be

obtained by obvious modifications of its proof. 1In féﬁﬁf
| »

the following is a statement of what one can expect.

THEOREM 6 1 Let C be the family of all non-null functions

Py .

defined on [a,b] which satisfy the normalization condition

b b | -
(6.2) /;(n)?dx =\/;2F(y2,x)dx,',4 | /
_ a |

a-

the initial)conditibns

y(a) = ,i.., = y(zn'2>(a)'= 0

N N
and for which the nth derivative is piecewise continuous.

Then for each positive 1nterger n, 1f/J(y) is the functional

.deflned by

b
2
(6.3) J(y) =\/1y(n) - G(YZ,X)]
a

s

the minimal problem

min J(y) = A B
C | _ f

(-4

has a solution y. This minimizing function is in fact a

solution of the system

g ’
Sy

= RLI
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where F(t,x) satisfies conditions (3.2) and G(t,x) is defined

o PR L p v

by (3.4). However, the existence of a solution vanishing

P {2 0 T it
-

(k-1) times in the interval (a,b) for each positive integer
B k, and the succeeding results of Section IV may not be so

1 easily obtainable.

g //AY ‘ Observe that the term (-1)" appears in the equation
§ (6.4) because of the form of EuleffLagrange equation
: for functionals containing derivatives of order n. One

; - should then also expect to obtain a result for the equation *

) .
3 .
- o

(6.5) y(Zn? - (-1)nF(y,x)” O,n 1,2,...., | j

g which is a generalization of the résult obtained by Wong [10]
for n = 1. However, the obvious modifications do not yield
“useful results, and more subtle cénditions must be found for

the class of admissible funétionsIC or for the function

F(t,x), or both. The problem does indeed become more

complicated with increasing n becuase the number of degrees

of freedom increase accordingly.
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