93 research outputs found

    Dynamic susceptibility-contrast magnetic resonance imaging with contrast agent leakage correction aids in predicting grade in pediatric brain tumours: a multicenter study

    Get PDF
    Background: Relative cerebral blood volume (rCBV) measured using dynamic susceptibility-contrast MRI can differentiate between low- and high-grade pediatric brain tumors. Multicenter studies are required for translation into clinical practice. Objective: We compared leakage-corrected dynamic susceptibility-contrast MRI perfusion parameters acquired at multiple centers in low- and high-grade pediatric brain tumors. Materials and methods: Eighty-five pediatric patients underwent pre-treatment dynamic susceptibility-contrast MRI scans at four centers. MRI protocols were variable. We analyzed data using the Boxerman leakage-correction method producing pixel-by-pixel estimates of leakage-uncorrected (rCBV uncorr) and corrected (rCBV corr) relative cerebral blood volume, and the leakage parameter, K 2. Histological diagnoses were obtained. Tumors were classified by high-grade tumor. We compared whole-tumor median perfusion parameters between low- and high-grade tumors and across tumor types. Results: Forty tumors were classified as low grade, 45 as high grade. Mean whole-tumor median rCBV uncorr was higher in high-grade tumors than low-grade tumors (mean ± standard deviation [SD] = 2.37±2.61 vs. –0.14±5.55; P<0.01). Average median rCBV increased following leakage correction (2.54±1.63 vs. 1.68±1.36; P=0.010), remaining higher in high-grade tumors than low grade-tumors. Low-grade tumors, particularly pilocytic astrocytomas, showed T1-dominant leakage effects; high-grade tumors showed T2*-dominance (mean K 2=0.017±0.049 vs. 0.002±0.017). Parameters varied with tumor type but not center. Median rCBV uncorr was higher (mean = 1.49 vs. 0.49; P=0.015) and K 2 lower (mean = 0.005 vs. 0.016; P=0.013) in children who received a pre-bolus of contrast agent compared to those who did not. Leakage correction removed the difference. Conclusion: Dynamic susceptibility-contrast MRI acquired at multiple centers helped distinguish between children’s brain tumors. Relative cerebral blood volume was significantly higher in high-grade compared to low-grade tumors and differed among common tumor types. Vessel leakage correction is required to provide accurate rCBV, particularly in low-grade enhancing tumors

    Matrilineal behavioral and physiological changes following the death of a non-alpha matriarch in rhesus macaque

    Get PDF
    In many species, the loss of alpha matriarchs is associated with a number of negative outcomes such as troop fission, eviction, wounding, and reduced vitality. However, whether the dramatic consequences of their loss are due to their role as an old experienced figure or to their alpha status remains unclear. In a retrospective study, we tested that in a semi-free ranging colony of rhesus macaques (Macaca mulatta), the removal of a non-alpha matriarch, who had a large set of kin, led to changes in behavior and physiological stress within her matriline. Following her removal, her matriline increased in aggression, vigilance, and social grooming. Additionally, hierarchical stability, measured by levels of rank changes, decreased within her matriline, and levels of intense aggression by high-ranking animals were more frequent, as well as matrilineal wounding. Although ordinal rank was positively associated with higher chronic hair cortisol concentrations (HCCs) in the months before the matriarch’s removal, following her removal, only those who experienced large increases in rank within her matriline displayed higher HCCs. Changes in matrilineal stability, aggression, behavior, and HCCs within the other two matrilines in the troop were not evident, although caution is needed due to the small sample sizes. We conclude that the removal of the non-alpha matriarch led to matrilineal instability, characterized by higher levels of aggression and subsequent vigilance, rank changes, physiological stress, and grooming. We suggest that non-alpha matriarchs with a large number of kin and social support can be integral to the stability of matrilines.Division of Intramural Research, National Institute of Child Health and Human Development, 1ZIAHD001107- 3

    The status of the world's land and marine mammals: diversity, threat, and knowledge

    Get PDF
    Knowledge of mammalian diversity is still surprisingly disparate, both regionally and taxonomically. Here, we present a comprehensive assessment of the conservation status and distribution of the world's mammals. Data, compiled by 1700+ experts, cover all 5487 species, including marine mammals. Global macroecological patterns are very different for land and marine species but suggest common mechanisms driving diversity and endemism across systems. Compared with land species, threat levels are higher among marine mammals, driven by different processes (accidental mortality and pollution, rather than habitat loss), and are spatially distinct (peaking in northern oceans, rather than in Southeast Asia). Marine mammals are also disproportionately poorly known. These data are made freely available to support further scientific developments and conservation action

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Heavy element production in a compact object merger observed by JWST

    Get PDF
    The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs) 1, sources of high-frequency gravitational waves (GWs) 2 and likely production sites for heavy-element nucleosynthesis by means of rapid neutron capture (the r-process) 3. Here we present observations of the exceptionally bright GRB 230307A. We show that GRB 230307A belongs to the class of long-duration GRBs associated with compact object mergers 4–6 and contains a kilonova similar to AT2017gfo, associated with the GW merger GW170817 (refs. 7–12). We obtained James Webb Space Telescope (JWST) mid-infrared imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns, which we interpret as tellurium (atomic mass A = 130) and a very red source, emitting most of its light in the mid-infrared owing to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create r-process elements across a broad atomic mass range and play a central role in heavy-element nucleosynthesis across the Universe

    Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images

    Get PDF
    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The best performances obtained by the SVM classifier using the essential features were 5–40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease
    corecore