143 research outputs found

    Signatures of accretion events in the halos of early-type galaxies from comparing PNe and GCs kinematics

    Full text link
    We have compared the halo kinematics traced by globular clusters (GCs) and planetary nebulae (PNe) for two elliptical galaxies in the Fornax and Virgo clusters NGC 1399 and NGC 4649, and for the merger remnant NGC 5128 (Centaurus A). We find differences in the rotational properties of the PN, red GC, and blue GC systems in all these three galaxies. NGC 1399 PNe and GCs show line of sight velocity distributions in specific regions that are significantly different, based on Kolmogorov-Smirnov tests. The PN system shows multi-spin components, with nearly opposite direction of rotation in the inner and the outer parts. The GCs velocity field is not point-symmetric in the outer regions of the galaxy, indicating that the system has not reached dynamical equilibrium yet. In NGC 4649 PNe, red and blue GCs have different rotation axes and rotational velocities. Finally, in NGC 5128 both PNe and GCs deviate from equilibrium in the outer regions of the galaxy, and in the inner regions the PN system is rotationally supported, whereas the GC system is dominated by velocity dispersion. The observed different kinematic properties, including deviations from point-symmetry, between PNe and GCs suggest that these systems are accreted at different times by the host galaxy, and the most recent accretion took place only few Gyr ago.We discuss two scenarios which may explain some of these differences: i) tidal stripping of loosely-bound GCs, and ii) multiple accretion of low luminosity and dwarf galaxies. Because these two mechanisms affect mostly the GC system, differences with the PNe kinematics can be expected.Comment: 14 pages, 13 figures, Accepted for publication in MNRAS. This new version contains an improved analysis, which includes the study of point-symmetry in the velocity fields and its implications for dynamical equilibriu

    Planetary nebula kinematics in NGC 1316: a young Sombrero

    Get PDF
    Aims. We present positions and velocities for 796 planetary nebulae (PNe) in the Fornax Brightest Cluster Galaxy NGC 1316 (Fornax A). The planetary nebulae and existing kinematics are used to explore the rotation of this merger remnant and constrain dynamical models. Methods. Using FORS2 on the VLT, the PN velocities were measured using a counter-dispersed slitless-spectroscopy technique that produced the largest-to-date sample outside of the Local Group. Spherical, non-rotating, constant-anisotropy Jeans models were con- strained by observations of the planetary nebulae and existing integrated light spectra. Results. The two-dimensional velocity field indicates dynamically-important rotation that rises in the outer parts, possibly due to the outward transfer of angular momentum during the merger. The modeling indicates a high dark matter content, particularly in the outer parts, that is consistent with previous estimates from dynamical models, lensing and stellar population models. Conclusions. The exceptionally large sample of PN velocities makes it possible to explore the kinematics of NGC 1316 in detail. Comparing the results to other early-type galaxies like NGC 1399 and NGC 4594 (M104, Sombrero), NGC 1316 represents a transi- tion phase from a major-merger event to a bulge-dominated galaxy like NGC 4594

    Interplay between unconventional superconductivity and heavy-fermion quantum criticality: CeCu2_2Si2_2 versus YbRh2_2Si2_2

    Get PDF
    In this paper the low-temperature properties of two isostructural canonical heavy-fermion compounds are contrasted with regards to the interplay between antiferromagnetic (AF) quantum criticality and superconductivity. For CeCu2_2Si2_2, fully-gapped d-wave superconductivity forms in the vicinity of an itinerant three-dimensional heavy-fermion spin-density-wave (SDW) quantum critical point (QCP). Inelastic neutron scattering results highlight that both quantum critical SDW fluctuations as well as Mott-type fluctuations of local magnetic moments contribute to the formation of Cooper pairs in CeCu2_2Si2_2. In YbRh2_2Si2_2, superconductivity appears to be suppressed at T 10T\gtrsim~10 mK by AF order (TNT_N = 70 mK). Ultra-low temperature measurements reveal a hybrid order between nuclear and 4f-electronic spins, which is dominated by the Yb-derived nuclear spins, to develop at TAT_A slightly above 2 mK. The hybrid order turns out to strongly compete with the primary 4f-electronic order and to push the material towards its QCP. Apparently, this paves the way for heavy-fermion superconductivity to form at TcT_c = 2 mK. Like the pressure - induced QCP in CeRhIn5_5, the magnetic field - induced one in YbRh2_2Si2_2 is of the local Kondo-destroying variety which corresponds to a Mott-type transition at zero temperature. Therefore, these materials form the link between the large family of about fifty low-TT unconventional heavy - fermion superconductors and other families of unconventional superconductors with higher TcT_cs, notably the doped Mott insulators of the cuprates, organic charge-transfer salts and some of the Fe-based superconductors. Our study suggests that heavy-fermion superconductivity near an AF QCP is a robust phenomenon.Comment: 30 pages, 7 Figures, Accepted for publication in Philosophical Magazin

    Diffuse light and galaxy interactions in the core of nearby clusters

    Full text link
    The kinematics of the diffuse light in the densest regions of the nearby clusters can be unmasked using the planetary nebulae (PNs) as probes of the stellar motions. The position-velocity diagrams around the brightest cluster galaxies (BCGs) identify the relative contributions from the outer halos and the intracluster light (ICL), defined as the light radiated by the stars floating in the cluster potential. The kinematics of the ICL can then be used to asses the dynamical status of the nearby cluster cores and to infer their formation histories. The cores of the Virgo and Coma are observed to be far from equilibrium, with mergers currently on-going, while the ICL properties in the Fornax and Hydra clusters show the presence of sub-components being accreted in their cores, but superposed to an otherwise relaxed population of stars. Finally the comparison of the observed ICL properties with those predicted from Lambda-CDM simulations indicates a qualitative agreement and provides insights on the ICL formation. Both observations and simulations indicate that BCG halos and ICL are physically distinct components, with the ``hotter" ICL dominating at large radial distances from the BCGs halos as the latter become progressively fainter.Comment: 14 pages, 5 figures. Invited review to appear in the proceedings of "Galaxies and their masks" eds. Block, D.L., Freeman, K.C. and Puerari, I., 2010, Springer (New York

    Low Temperature Properties of Anisotropic Superconductors with Kondo Impurities

    Full text link
    We present a self-consistent theory of superconductors in the presence of Kondo impurities, using large-NN slave-boson methods to treat the impurity dynamics. The technique is tested on the s-wave case and shown to give good results compared to other methods for TK>TcT_K > T_c. We calculate low temperature thermodynamic and transport properties for various superconducting states, including isotropic s-wave and representative anisotropic model states with line and point nodes on the Fermi surface.Comment: 21 pages, RevTeX 3.0, 12 figures available upon request, UF preprin

    The PN.S Elliptical Galaxy Survey: a standard LCDM halo around NGC 4374?

    Get PDF
    As part of our current programme to test LCDM predictions for dark matter (DM) haloes using extended kinematical observations of early-type galaxies, we present a dynamical analysis of the bright elliptical galaxy NGC 4374 (M84) based on ~450 Planetary Nebulae (PNe) velocities from the PN.Spectrograph, along with extended long-slit stellar kinematics. This is the first such analysis of a galaxy from our survey with a radially constant velocity dispersion profile. We find that the spatial and kinematical distributions of the PNe agree with the field stars in the region of overlap. The velocity kurtosis is consistent with zero at almost all radii. We construct a series of Jeans models, fitting both velocity dispersion and kurtosis to help break the mass-anisotropy degeneracy. Our mass models include DM halos either with shallow cores or with central cusps as predicted by cosmological simulations - along with the novel introduction in this context of adiabatic halo contraction from baryon infall. Both classes of models confirm a very massive dark halo around NGC 4374, demonstrating that PN kinematics data are well able to detect such haloes when present. Considering the default cosmological mass model, we confirm earlier suggestions that bright galaxies tend to have halo concentrations higher than LCDM predictions, but this is found to be solved if either a Salpeter IMF or adiabatic contraction with a Kroupa IMF is assumed. Thus for the first time a case is found where the PN dynamics may well be consistent with a standard dark matter halo. A cored halo can also fit the data, and prefers a stellar mass consistent with a Salpeter IMF. The less dramatic dark matter content found in lower-luminosity "ordinary" ellipticals suggests a bimodality in the halo properties which may be produced by divergent baryonic effects during their assembly histories.Comment: 22 pages, 14 figures. MNRAS, accepte

    CAR-T cell. the long and winding road to solid tumors

    Get PDF
    Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles

    The PN.S Elliptical Galaxy Survey: the dark matter in NGC 4494

    Get PDF
    We present new Planetary Nebula Spectrograph observations of the ordinary elliptical galaxy NGC 4494, resulting in positions and velocities of 255 PNe out to 7 effective radii (25 kpc). We also present new wide-field surface photometry from MMT/Megacam, and long-slit stellar kinematics from VLT/FORS2. The spatial and kinematical distributions of the PNe agree with the field stars in the region of overlap. The mean rotation is relatively low, with a possible kinematic axis twist outside 1 Re. The velocity dispersion profile declines with radius, though not very steeply, down to ~70 km/s at the last data point. We have constructed spherical dynamical models of the system, including Jeans analyses with multi-component LCDM-motivated galaxies as well as logarithmic potentials. These models include special attention to orbital anisotropy, which we constrain using fourth-order velocity moments. Given several different sets of modelling methods and assumptions, we find consistent results for the mass profile within the radial range constrained by the data. Some dark matter (DM) is required by the data; our best-fit solution has a radially anisotropic stellar halo, a plausible stellar mass-to-light ratio, and a DM halo with an unexpectedly low central density. We find that this result does not substantially change with a flattened axisymmetric model. Taken together with other results for galaxy halo masses, we find suggestions for a puzzling pattern wherein most intermediate-luminosity galaxies have very low concentration halos, while some high-mass ellipticals have very high concentrations. We discuss some possible implications of these results for DM and galaxy formation.Comment: 29 pages, 17 figures. MNRAS, accepte

    The Globular Cluster Systems of Abell 1185

    Full text link
    We examine the properties of a previously discovered population of globular clusters in the heart of the rich galaxy cluster Abell 1185 that might be intergalactic in nature. Deep images obtained with the Advanced Camera for Surveys (ACS) aboard Hubble Space Telescope (HST) confirm the presence of ~ 1300 globular clusters brighter than I_{F814W} = 27.3 mag in a field devoid of any large galaxies. The luminosities and colors of these objects are found to be similar to those of metal-poor globular clusters observed in many galaxies to date. Although a significant fraction of the detected globular clusters undoubtedly reside in the outer halos of galaxies adjacent to this field, detailed modeling of their distribution suggests that the majority of these objects are likely to be intergalactic, in the sense that they are not gravitationally bound to any individual galaxy. We conclude that the true nature and origin of the globular cluster population in the core of A1185 -- galactic residents or intergalactic wanderers -- remains uncertain, and suggest how future observation could resolve this ambiguity.Comment: Accepted for publication in Astronomy and Astrophysics, 13 pages, 15 figure

    Psychotropic drug influences on brain acetylcholine utilization

    Full text link
    The cholinergic antisynthesis agent HC-3 was given intraventricularly to young male rats 20–30 days old to deplete brain acetylcholine (ACh). The rate of HC-3 induced depletion of ACh was used as an index of ACh utilization. Total brain ACh was determined following various doses of chlordiazepoxide, pentobarbital, chlorpromazine, methotrimeprazine, imipramine, morphine, d -amphetamine, scopolamine, LSD-25, and phencyclidine given i.p. alone and after intraventricular administration of HC-3. It was found that psychotropic drugs have marked differential effects on the rate of HC-3 induced ACh depletion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46382/1/213_2004_Article_BF00421968.pd
    corecore