114 research outputs found

    Holocene evolution of a barrier island system, Ria Formosa, South Portugal

    Get PDF
    Holocene evolution of the Ria Formosa barrier island system was studied through the examination of a large subsurface dataset acquired from 191 boreholes and five seismic refraction profiles. Two boreholes with total depths of 26 and 16.5 m were selected for a multi-proxy detailed laboratory analysis, including mean grain size distribution, organic matter (OM) content, color variation, shell identification, and benthic foraminifera assemblages. Selected cores are thought to be representative of the identified depositional sub-basins. Subsurface age data from 16 AMS C-14 dated samples were plotted against depth and resulted in a coherent age model of sedimentary infill. The system evolution was largely controlled by sediment availability, accommodation space, and Holocene sea level rise, first at a rapid rate of 7 mm/yr from 10 kcal yr BP to 7.25 kcal yr BP, followed by a slowdown to 1.1 mm/yr until present. A conceptual model for the origin and Holocene evolution of the Ria Formosa barrier island system implies three main steps, leading to the present system geomorphology: (1) marine flooding of incised palaeovalleys by the rapid transgression of palaeovalleys in the early Holocene(2) development of a proto-barrier island chain perched on Pleistocene detritic headlands and steeper interfluve areas during the early to middle Holoceneand (3) full development of the barrier islands chain and enclosing of the coastal lagoon, followed by the maturation of the system with subsequent siltation and salt marsh expansion from the middle Holocene until present. The onset of barrier system formation dates back to ca. 8 kcal yr BP, predating previously proposed age.SIHER project [PTDC/CTE-GIX112236/2009]EU Erasmus Mundus Joint Doctorate in Marine and Coastal Management (MACOMA) fellowship grant, under University of AlgarveEU Erasmus Mundus Joint Doctorate in Marine and Coastal Management (MACOMA) fellowship grant, under University of Cadi

    A Climate Index Optimized for Longshore Sediment Transport Reveals Interannual and Multidecadal Littoral Cell Rotations

    Get PDF
    A recent 35-year endpoint shoreline change analysis revealed significant counterclockwiserotations occurring in north-central Oregon, USA, littoral cells that extend 10s of kilometers in length.While the potential for severe El Niños to contribute to littoral cell rotations at seasonal to interannual scalewas previously recognized, the dynamics resulting in persistent (multidecadal) rotation were unknown,largely due to a lack of historical wave conditions extending back multiple decades and the difficulty ofseparating the timescales of shoreline variability in a high energy region. This study addresses this questionby (1) developing a statistical downscaling framework to characterize wave conditions relevant for longshoresediment transport during data-poor decades and (2) applying a one-line shoreline change model toquantitatively assess the potential for such large embayed beaches to rotate. A climateINdex was optimizedto capture variability in longshore wave power as a proxy for potentialLOngshore Sediment Transport(LOST_IN), and a procedure was developed to simulate many realizations of potential wave conditions fromthe index. Waves were transformed dynamically with Simulating Waves Nearshore to the nearshore asinputs to a one-line model that revealed shoreline rotations of embayed beaches at multiple time and spatialscales not previously discernible from infrequent observations. Model results indicate that littoral cellsrespond to both interannual and multidecadal oscillations, producing comparable shoreline excursions toextreme El Niño winters. The technique quantitatively relates morphodynamic forcing to specific climatepatterns and has the potential to better identify and quantify coastal variability on timescales relevant to achanging climate.This work would not have been possible without funding from the NSF Graduate Research Fellowship Program (GRFP) through NSF grant DGE-1314109, the Coastal and Ocean Climate Applications (COCA) program through NOAA grant NA15OAR4310243, NOAA’s Regional Integrated Sciences and Assessments Program (RISA), under NOAA grant NA15OAR4310145, and the Spanish Ministerio de EducaciĂłn Cultura y Deporte FPU (FormaciĂłn del Profesorado Universitario) studentship BOE-A-2013-12235. Beach survey data collection undertaken on the Oregon coast was made possible by the Northwest Association of Networked Ocean Observing Systems (NANOOS) through NOAA grant NA16NOS0120019

    Bad Practice in Erosion Management: The Southern Sicily Case Study

    Get PDF
    This case study from Sicily illustrates a common sequence of events where one unwise action was countered with another, which in turn created additional problems. The situation arose through strong political interference and ignorance (or lack of concern) regarding the environmental impacts of human interventions on the shoreline and by the public perception that government has a duty to protect private property. The poor design and location of ports and harbours produced infilling problems and huge updrift accretion with concomitant downdrift erosion. The human-induced coastal retreat was counteracted by the progressive emplacement of breakwaters creating a “domino” effect. On many occasions these were constructed to protect unplanned and illegal (in the sense that they do not conform to planning regulations) beachfront summer houses. Without the presence of these structures, there would have been no need for publicly funded intervention. Furthermore, only a narrow coastal belt close to the shoreline is used by bathers on the wide beaches formed updrift of ports and harbours and in the lee of breakwaters, most of the accreted beach being unused or partially occupied by tourist developments. Thus beach users and municipalities acquired some benefits from beach accretion at specific sites, the opposite being true in eroding areas

    Pre-dialysis clinic attendance improves quality of life among hemodialysis patients

    Get PDF
    BACKGROUND: Although previous research has demonstrated that referral to pre-dialysis clinics is associated with favourable objective outcomes, the benefit of a pre-dialysis clinic from the perspective of patient-perceived subjective outcomes, such as quality of life (QOL), is less well defined. METHODS: A retrospective incident cohort study was conducted to determine if pre-dialysis clinic attendance was a predictor of better QOL scores measured within the first six months of hemodialysis (HD) initiation. Inclusion criteria were HD initiation from January 1 1998 to January 1 2000, diagnosis of chronic renal failure, and completion of the QOL questionnaire within six months of HD initiation. Patients receiving HD for less than four weeks were excluded. An incident cohort of 120 dialysis patients was identified, including 74 patients who attended at least one pre-dialysis clinic and 46 patients who did not. QOL was measured using the SF 36-Item Health Survey. Independent variables included age, sex, diabetes, pre-dialysis clinic attendance and length of attendance, history of ischemic heart disease, stroke, peripheral vascular disease, heart failure, malignancy, and chronic lung disease, residual creatinine clearance at dialysis initiation, and kt/v, albumin and hemoglobin at the time of QOL assessment. Bivariate and multivariate linear regression analyses were used to identify predictors of QOL scores. RESULTS: Multivariate analysis suggested that pre-dialysis clinic attendance was an independent predictor of higher QOL scores in four of eight health domains (physical function, p < 0.01; emotional role limitation, p = 0.01; social function, p = 0.01; and general health, p = 0.03), even after statistical adjustment for age, sex, residual renal function, kt/v, albumin, and co-morbid disease. Pre-dialysis clinic attendance was also an independent predictor of the physical component summary score (p = 0.03). CONCLUSIONS: We conclude that pre-dialysis clinic attendance favourably influences patient-perceived quality of life within six months of dialysis initiation

    Benthic ecology of semi-natural coastal lagoons, in the Ria Formosa (Southern Portugal), Exposed to different water renewal regimes

    Get PDF
    Several studies in semi-natural coastal lagoons in the Ria Formosa lagoonal system have been carried out. These man-made water reservoirs behave as small lagoons with one opening to the tidal channels, which may be intermittent. Because of their size, these reservoirs are ideal sites for ecological studies. Water quality and macrobenthic fauna were analysed in five water reservoirs. All reservoirs received the same incoming water through a tidal channel, but they differed in water renewal regime. Multidimensional Scaling (MDS) and Discriminant Analysis were used to evaluate the similarity among sites, stations and sampling occasions. Different levels of taxonomic resolution (family, large taxonomic groups and phylum level) were also evaluated. The separation of sites and stations became unclear using high taxonomic levels. Results from the multivariate analyses suggest a slight differentiation of the stations according to sampling occasion but a clear differentiation of the several water reservoirs. Some of the lagoons studied with low water renewal rates showed strong environmental variations. They were characterised by low diversity indexes and abundance of small-sized organisms. Other lagoons, with high water renewal rates, showed low environmental variation and well diversified and structured benthic communities. The main environmental factor that seems to affect the benthic communities was the variation in salinity between neap and spring tides, which is related with the water renewal regime. Coastal lagoons offer a protected shallow habitat, which can be highly productive. Well structured communities, controlled by k-strategists, can develop and settle in leaky lagoons, that is, lagoons with wide entrance channels and tidal currents which guarantee a good water renewal. In these lagoons, biomass can accumulate in large organisms. In contrast, lagoons with a single narrow entrance, that may be closed for long periods, are characterised by persistent physical stress and are dominated by communities of small-sized r-strategists

    Oyster Reefs as Natural Breakwaters Mitigate Shoreline Loss and Facilitate Fisheries

    Get PDF
    Shorelines at the interface of marine, estuarine and terrestrial biomes are among the most degraded and threatened habitats in the coastal zone because of their sensitivity to sea level rise, storms and increased human utilization. Previous efforts to protect shorelines have largely involved constructing bulkheads and seawalls which can detrimentally affect nearshore habitats. Recently, efforts have shifted towards “living shoreline” approaches that include biogenic breakwater reefs. Our study experimentally tested the efficacy of breakwater reefs constructed of oyster shell for protecting eroding coastal shorelines and their effect on nearshore fish and shellfish communities. Along two different stretches of eroding shoreline, we created replicated pairs of subtidal breakwater reefs and established unaltered reference areas as controls. At both sites we measured shoreline and bathymetric change and quantified oyster recruitment, fish and mobile macro-invertebrate abundances. Breakwater reef treatments mitigated shoreline retreat by more than 40% at one site, but overall vegetation retreat and erosion rates were high across all treatments and at both sites. Oyster settlement and subsequent survival were observed at both sites, with mean adult densities reaching more than eighty oysters m−2 at one site. We found the corridor between intertidal marsh and oyster reef breakwaters supported higher abundances and different communities of fishes than control plots without oyster reef habitat. Among the fishes and mobile invertebrates that appeared to be strongly enhanced were several economically-important species. Blue crabs (Callinectes sapidus) were the most clearly enhanced (+297%) by the presence of breakwater reefs, while red drum (Sciaenops ocellatus) (+108%), spotted seatrout (Cynoscion nebulosus) (+88%) and flounder (Paralichthys sp.) (+79%) also benefited. Although the vertical relief of the breakwater reefs was reduced over the course of our study and this compromised the shoreline protection capacity, the observed habitat value demonstrates ecological justification for future, more robust shoreline protection projects

    Index-based approach for estimating vulnerability of Arctic biota to oil spills

    Get PDF
    Risk of an Arctic oil spill has become a global matter of concern. Climate change induced opening of shipping routes increases the Arctic maritime traffic which exposes the area to negative impacts of potential maritime accidents. Still, quantitative analyses of the likely environmental impacts of such accidents are scarce, and our understanding of the uncertainties related to both accidents and their consequences is poor. There is an obvious need for analysis tools that allow us to systematically analyze the impacts of oil spills on Arctic species, so the risks can be taken into account when new sea routes or previously unexploited oil reserves are utilized. In this paper, an index‐based approach is developed to study exposure potential (described via probability of becoming exposed to spilled oil) and sensitivity (described via oil‐induced mortality and recovery) of Arctic biota in the face of an oil spill. First, a conceptual model presenting the relevant variables that contribute to exposure potential and sensitivity of key Arctic marine functional groups was built. Second, based on an extensive literature review, a probabilistic estimate was assigned for each variable, and the variables were combined to an index representing the overall vulnerability of Arctic biota. The resulting index can be used to compare the relative risk between functional groups and accident scenarios. Results indicate that birds have the highest vulnerability to spilled oil, and seals and whales the lowest. Polar bears’ vulnerability varies greatly between seasons, while ice seals’ vulnerability remains the same in every accident scenario. Exposure potential of most groups depends strongly on type of oil, whereas their sensitivity contains less variation.Peer reviewe

    Scale-dependent perspectives on the geomorphology and evolution of beachdune systems

    Get PDF
    Despite widespread recognition that landforms are complex Earth systems with process-response linkages that span temporal scales from seconds to millennia and spatial scales from sand grains to landscapes, research that integrates knowledge across these scales is fairly uncommon. As a result, understanding of geomorphic systems is often scale-constrained due to a host of methodological, logistical, and theoretical factors that limit the scope of how Earth scientists study landforms and broader landscapes. This paper reviews recent advances in understanding of the geomorphology of beach-dune systems derived from over a decade of collaborative research from Prince Edward Island (PEI), Canada. A comprehensive summary of key findings is provided from short-term experiments embedded within a decade-long monitoring program and a multi-decadal reconstruction of coastal landscape change. Specific attention is paid to the challenges of scale integration and the contextual limitations research at specific spatial and/or temporal scales imposes. A conceptual framework is presented that integrates across key scales of investigation in geomorphology and is grounded in classic ideas in Earth surface sciences on the effectiveness of formative events at different scales. The paper uses this framework to organize the review of this body of research in a 'scale aware' way and, thereby, identifies many new advances in knowledge on the form and function of subaerial beach-dune systems. Finally, the paper offers a synopsis of how greater understanding of the complexities at different scales can be used to inform the development of predictive models, especially those at a temporal scale of decades to centuries, which are most relevant to coastal management issues. Models at this (landform) scale require an understanding of controls that exist at both ‘landscape’ and ‘plot’ scales. Landscape scale controls such as sea level change, regional climate, and the underlying geologic framework essentially provide bounding conditions for independent variables such as winds, waves, water levels, and littoral sediment supply. Similarly, an holistic understanding of the range of processes, feedbacks, and linkages at the finer plot scale is required to inform and verify the assumptions that underly the physical modelling of beach-dune interaction at the landform scale
    • 

    corecore