24 research outputs found

    The Roles of the S3MPC: Monitoring, Validation and Evolution of Sentinel-3 Altimetry Observations

    Get PDF
    The Sentinel-3 Mission Performance Centre (S3MPC) is tasked by the European Space Agency (ESA) to monitor the health of the Copernicus Sentinel-3 satellites and ensure a high data quality to the users. This paper deals exclusively with the effort devoted to the altimeter and microwave radiometer, both components of the Surface Topography Mission (STM). The altimeters on Sentinel-3A and -3B are the first to operate in delay-Doppler or SAR mode over all Earth surfaces, which enables better spatial resolution of the signal in the along-track direction and improved noise reduction through multi-looking, whilst the radiometer is a two-channel nadir-viewing system. There are regular routine assessments of the instruments through investigation of telemetered housekeeping data, calibrations over selected sites and comparisons of geophysical retrievals with models, in situ data and other satellite systems. These are performed both to monitor the daily production, assessing the uncertainties and errors on the estimates, and also to characterize the long-term performance for climate science applications. This is critical because an undetected drift in performance could be misconstrued as a climate variation. As the data are used by the Copernicus Services (e.g., CMEMS, Global Land Monitoring Services) and by the research community over open ocean, coastal waters, sea ice, land ice, rivers and lakes, the validation activities encompass all these domains, with regular reports openly available. The S3MPC is also in charge of preparing improvements to the processing, and of the development and tuning of algorithms to improve their accuracy. This paper is thus the first refereed publication to bring together the analysis of SAR altimetry across all these different domains to highlight the benefits and existing challenges

    Magma plumbing systems: a geophysical perspective

    Get PDF
    Over the last few decades, significant advances in using geophysical techniques to image the structure of magma plumbing systems have enabled the identification of zones of melt accumulation, crystal mush development, and magma migration. Combining advanced geophysical observations with petrological and geochemical data has arguably revolutionised our understanding of, and afforded exciting new insights into, the development of entire magma plumbing systems. However, divisions between the scales and physical settings over which these geophysical, petrological, and geochemical methods are applied still remain. To characterise some of these differences and promote the benefits of further integration between these methodologies, we provide a review of geophysical techniques and discuss how they can be utilised to provide a structural context for and place physical limits on the chemical evolution of magma plumbing systems. For example, we examine how Interferometric Synthetic Aperture Radar (InSAR), coupled with Global Positioning System (GPS) and Global Navigation Satellite System (GNSS) data, and seismicity may be used to track magma migration in near real-time. We also discuss how seismic imaging, gravimetry and electromagnetic data can identify contemporary melt zones, magma reservoirs and/or crystal mushes. These techniques complement seismic reflection data and rock magnetic analyses that delimit the structure and emplacement of ancient magma plumbing systems. For each of these techniques, with the addition of full-waveform inversion (FWI), the use of Unmanned Aerial Vehicles (UAVs) and the integration of geophysics with numerical modelling, we discuss potential future directions. We show that approaching problems concerning magma plumbing systems from an integrated petrological, geochemical, and geophysical perspective will undoubtedly yield important scientific advances, providing exciting future opportunities for the volcanological community

    Corsica: A 20-Yr Multi-Mission Absolute Altimeter Calibration Site

    No full text
    International audienceInitially developed for monitoring the performance of TOPEX/Poseidon and follow-on Jason legacy satellite altimeters, the Corsica geodetic facilities that are located both at Senetosa Cape and near Ajaccio have been developed to calibrate successive satellite altimeters in an absolute sense. Since 1998, the successful calibration process used to calibrate most of the oceanographic satellite altimeter missions has been regularly updated in terms of in situ instruments, geodetic measurements and methodologies. In this study, we present an assessment of the long-term stability of the in situ instruments in terms of sea level monitoring that include a careful monitoring of the geodetic datum. Based on this 20-yr series of sea level measurements, we present a review of the derived absolute Sea Surface Height (SSH) biases for the following altimetric missions based on the most recent reprocessing of their data set: TOPEX/Poseidon and Jason-1/2/3, Envisat and ERS-2, CryoSat-2, SARAL/AltiKa and Sentinel-3A&B. For the longest time series the standard error of the absolute SSH biases is now at a few millimeters level which is fundamental to maintain the high level of confidence that scientists have in the global mean sea level rise

    Petrogenesis of Archean PGM-bearing chromitites and associated ultramafic-mafic-anorthositic rocks from the Guelb el Azib layered complex (West African craton, Mauritania)

    Full text link
    The Archean Guelb el Azib layered complex (GAC) in the West African craton of Mauritania is composed of an association of serpentinites, chromitites, amphibolites and anorthosites with few fine-grained amphibolite dykes. The complex forms tectonic slices in 2.9-3.5. Ga TTG gneiss terrains in close association with supracrustal rocks (BIFs, impure marbles, amphibolites). It was affected by a main granulite-facies grade metamorphism (up to 900. °C at 5-6. kbar) with subsequent retrogression in amphibolite and greenschist facies conditions. The preserved igneous macrostructures, the mineral compositions and the nature of relic magmatic assemblages have been used to constrain the composition of the parental melts and the conditions of crystallization. According to petrological observations and to comparison with experimental data, the formation of the complex can be explained by fractionation of a slightly hydrous high-alumina basaltic melt at low pressure. The early fractionation of olivine and the absence of massive clinopyroxene fractionation before plagioclase saturation led to crystallization of highly calcic plagioclase with Fe-, Al-rich but Cr-poor chromite from a hydrous tholeiitic parental magma, similar to worldwide Archean tholeiites. The complex shares many similarities with Archean anorthosite layered complexes, possibly formed in a supra-subduction zone environment according to results obtained on similar 2.9-3.0. Ga complexes from Greenland and India (namely Fiskenaesset and Sittampundi). Three phases of PGE mineralization affected the GAC chromitites: (i) igneous crystallization of laurite; (ii) formation of late magmatic IPGE sulpho-arsenides (irarsite-hollingworthite) and (iii) hydrothermal Pt-Pd mineralization represented by sperrylite and rustenburgite. © 2012 Elsevier B.V
    corecore