35 research outputs found

    The Neutral Gas Dynamics of the Nearby Magellanic Irregular Galaxy UGCA 105

    Full text link
    We present new low-resolution HI spectral line imaging, obtained with the Karl G. Jansky Very Large Array (JVLA), of the star-forming Magellanic irregular galaxy UGCA 105. This nearby (D = 3.39+/-0.25 Mpc), low mass [M_HI=(4.3+/-0.5)x10^8 Solar masses] system harbors a large neutral gas disk (HI radius ~7.2 kpc at the N_HI=10^20 cm^-2 level) that is roughly twice as large as the stellar disk at the B-band R_25 isophote. We explore the neutral gas dynamics of this system, fitting tilted ring models in order to extract a well-sampled rotation curve. The rotation velocity rises in the inner disk, flattens at 72+/-3 km/s, and remains flat to the last measured point of the disk (~7.5 kpc). The dynamical mass of UGCA 105 at this outermost point, (9+/-2)x10^9 Solar masses, is ~10 times as large as the luminous baryonic components (neutral atomic gas and stars). The proximity and favorable inclination (55 degrees) of UGCA 105 make it a promising target for high-resolution studies of both star formation and rotational dynamics in a nearby low-mass galaxy.Comment: The Astronomical Journal, in pres

    Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden

    Get PDF
    Abstract Background It has traditionally been thought that the pathological accumulation of tau in Alzheimer's disease and other tauopathies facilitates neurodegeneration, which in turn leads to cognitive impairment. However, recent evidence suggests that tau tangles are not the entity responsible for memory loss, rather it is an intermediate tau species that disrupts neuronal function. Thus, efforts to discover therapeutics for tauopathies emphasize soluble tau reductions as well as neuroprotection. Results Here, we found that neuroprotection alone caused by methylene blue (MB), the parent compound of the anti-tau phenothiaziazine drug, Rember™, was insufficient to rescue cognition in a mouse model of the human tauopathy, progressive supranuclear palsy (PSP) and fronto-temporal dementia with parkinsonism linked to chromosome 17 (FTDP17): Only when levels of soluble tau protein were concomitantly reduced by a very high concentration of MB, was cognitive improvement observed. Thus, neurodegeneration can be decoupled from tau accumulation, but phenotypic improvement is only possible when soluble tau levels are also reduced. Conclusions Neuroprotection alone is not sufficient to rescue tau-induced memory loss in a transgenic mouse model. Development of neuroprotective agents is an area of intense investigation in the tauopathy drug discovery field. This may ultimately be an unsuccessful approach if soluble toxic tau intermediates are not also reduced. Thus, MB and related compounds, despite their pleiotropic nature, may be the proverbial "magic bullet" because they not only are neuroprotective, but are also able to facilitate soluble tau clearance. Moreover, this shows that neuroprotection is possible without reducing tau levels. This indicates that there is a definitive molecular link between tau and cell death cascades that can be disrupted.http://deepblue.lib.umich.edu/bitstream/2027.42/78314/1/1750-1326-5-45.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78314/2/1750-1326-5-45.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78314/3/1750-1326-5-45-S1.PDFPeer Reviewe

    Genetic Profiling Using Genome-Wide Significant Coronary Artery Disease Risk Variants Does Not Improve the Prediction of Subclinical Atherosclerosis: The Cardiovascular Risk in Young Finns Study, the Bogalusa Heart Study and the Health 2000 Survey – A Meta-Analysis of Three Independent Studies

    Get PDF
    Background Genome-wide association studies (GWASs) have identified a large number of variants (SNPs) associating with an increased risk of coronary artery disease (CAD). Recently, the CARDIoGRAM consortium published a GWAS based on the largest study population so far. They successfully replicated twelve already known associations and discovered thirteen new SNPs associating with CAD. We examined whether the genetic profiling of these variants improves prediction of subclinical atherosclerosis – i.e., carotid intima-media thickness (CIMT) and carotid artery elasticity (CAE) – beyond classical risk factors. Subjects and Methods We genotyped 24 variants found in a population of European ancestry and measured CIMT and CAE in 2001 and 2007 from 2,081, and 2,015 subjects (aged 30–45 years in 2007) respectively, participating in the Cardiovascular Risk in Young Finns Study (YFS). The Bogalusa Heart Study (BHS; n = 1179) was used as a replication cohort (mean age of 37.5). For additional replication, a sub-sample of 5 SNPs was genotyped for 1,291 individuals aged 46–76 years participating in the Health 2000 population survey. We tested the impact of genetic risk score (GRS24SNP/CAD) calculated as a weighted (by allelic odds ratios for CAD) sum of CAD risk alleles from the studied 24 variants on CIMT, CAE, the incidence of carotid atherosclerosis and the progression of CIMT and CAE during a 6-year follow-up. Results CIMT or CAE did not significantly associate with GRS24SNP/CAD before or after adjusting for classical CAD risk factors (p>0.05 for all) in YFS or in the BHS. CIMT and CAE associated with only one SNP each in the YFS. The findings were not replicated in the replication cohorts. In the meta-analysis CIMT or CAE did not associate with any of the SNPs. Conclusion Genetic profiling, by using known CAD risk variants, should not improve risk stratification for subclinical atherosclerosis beyond conventional risk factors among healthy young adults.Public Library of Science open acces

    Climate drives the geography of marine consumption by changing predator communities

    Get PDF
    Este artículo contiene 7 páginas, 3 figuras, 1 tabla.The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth’s ecosystems.We acknowledge funding from the Smithsonian Institution and the Tula Foundation.Peer reviewe

    Creatine Monohydrate and Conjugated Linoleic Acid Improve Strength and Body Composition Following Resistance Exercise in Older Adults

    Get PDF
    Aging is associated with lower muscle mass and an increase in body fat. We examined whether creatine monohydrate (CrM) and conjugated linoleic acid (CLA) could enhance strength gains and improve body composition (i.e., increase fat-free mass (FFM); decrease body fat) following resistance exercise training in older adults (>65 y). Men (N = 19) and women (N = 20) completed six months of resistance exercise training with CrM (5g/d)+CLA (6g/d) or placebo with randomized, double blind, allocation. Outcomes included: strength and muscular endurance, functional tasks, body composition (DEXA scan), blood tests (lipids, liver function, CK, glucose, systemic inflammation markers (IL-6, C-reactive protein)), urinary markers of compliance (creatine/creatinine), oxidative stress (8-OH-2dG, 8-isoP) and bone resorption (Ν-telopeptides). Exercise training improved all measurements of functional capacity (P<0.05) and strength (P<0.001), with greater improvement for the CrM+CLA group in most measurements of muscular endurance, isokinetic knee extension strength, FFM, and lower fat mass (P<0.05). Plasma creatinine (P<0.05), but not creatinine clearance, increased for CrM+CLA, with no changes in serum CK activity or liver function tests. Together, this data confirms that supervised resistance exercise training is safe and effective for increasing strength in older adults and that a combination of CrM and CLA can enhance some of the beneficial effects of training over a six-month period. Trial Registration. ClinicalTrials.gov NCT0047390

    A Comparison of Methods to Harmonize Cortical Thickness Measurements Across Scanners and Sites

    Get PDF
    Results of neuroimaging datasets aggregated from multiple sites may be biased by site-specific profiles in participants’ demographic and clinical characteristics, as well as MRI acquisition protocols and scanning platforms. We compared the impact of four different harmonization methods on results obtained from analyses of cortical thickness data: (1) linear mixed-effects model (LME) that models site-specific random intercepts (LME INT), (2) LME that models both site-specific random intercepts and age-related random slopes (LME INT+SLP), (3) ComBat, and (4) ComBat with a generalized additive model (ComBat-GAM). Our test case for comparing harmonization methods was cortical thickness data aggregated from 29 sites, which included 1,340 cases with posttraumatic stress disorder (PTSD) (6.2–81.8 years old) and 2,057 trauma-exposed controls without PTSD (6.3–85.2 years old). We found that, compared to the other data harmonization methods, data processed with ComBat-GAM was more sensitive to the detection of significant case-control differences (Χ 2(3) = 63.704, p < 0.001) as well as case-control differences in age-related cortical thinning (Χ 2(3) = 12.082, p = 0.007). Both ComBat and ComBat-GAM outperformed LME methods in detecting sex differences (Χ 2(3) = 9.114, p = 0.028) in regional cortical thickness. ComBat-GAM also led to stronger estimates of age-related declines in cortical thickness (corrected p-values < 0.001), stronger estimates of case-related cortical thickness reduction (corrected p-values < 0.001), weaker estimates of age-related declines in cortical thickness in cases than controls (corrected p-values < 0.001), stronger estimates of cortical thickness reduction in females than males (corrected p-values < 0.001), and stronger estimates of cortical thickness reduction in females relative to males in cases than controls (corrected p-values < 0.001). Our results support the use of ComBat-GAM to minimize confounds and increase statistical power when harmonizing data with non-linear effects, and the use of either ComBat or ComBat-GAM for harmonizing data with linear effects

    Remodeling of the Cortical Structural Connectome in Posttraumatic Stress Disorder:Results from the ENIGMA-PGC PTSD Consortium

    Get PDF
    BACKGROUND: Posttraumatic stress disorder (PTSD) is accompanied by disrupted cortical neuroanatomy. We investigated alteration in covariance of structural networks associated with PTSD in regions that demonstrate the case-control differences in cortical thickness (CT) and surface area (SA). METHODS: Neuroimaging and clinical data were aggregated from 29 research sites in >1,300 PTSD cases and >2,000 trauma-exposed controls (age 6.2-85.2 years) by the ENIGMA-PGC PTSD working group. Cortical regions in the network were rank-ordered by effect size of PTSD-related cortical differences in CT and SA. The top-n (n = 2 to 148) regions with the largest effect size for PTSD > non-PTSD formed hypertrophic networks, the largest effect size for PTSD < non-PTSD formed atrophic networks, and the smallest effect size of between-group differences formed stable networks. The mean structural covariance (SC) of a given n-region network was the average of all positive pairwise correlations and was compared to the mean SC of 5,000 randomly generated n-region networks. RESULTS: Patients with PTSD, relative to non-PTSD controls, exhibited lower mean SC in CT-based and SA-based atrophic networks. Comorbid depression, sex and age modulated covariance differences of PTSD-related structural networks. CONCLUSIONS: Covariance of structural networks based on CT and cortical SA are affected by PTSD and further modulated by comorbid depression, sex, and age. The structural covariance networks that are perturbed in PTSD comport with converging evidence from resting state functional connectivity networks and networks impacted by inflammatory processes, and stress hormones in PTSD

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    T-Cell Factor 4N (TCF-4N), a Novel Isoform of Mouse TCF-4, Synergizes with β-Catenin To Coactivate C/EBPα and Steroidogenic Factor 1 Transcription Factors

    No full text
    We have cloned T-cell factor 4N (TCF-4N), an alternative isoform of TCF-4, from developing pituitary and 3T3-L1 preadipocytes. This protein contains the N-terminal interaction domain for β-catenin but lacks the DNA binding domain. While TCF-4N inhibited coactivation by β-catenin of a TCF/lymphoid-enhancing factor (LEF)-dependent promoter, TCF-4N potentiated coactivation by β-catenin of several non-TCF/LEF-dependent promoters. For example, TCF-4N synergized with β-catenin to activate the α-inhibin promoter through functional and physical interactions with the orphan nuclear receptor steroidogenic factor 1 (SF-1). In addition, TCF-4N and β-catenin synergized with the adipogenic transcription factor CCAAT/enhancer binding protein α (C/EBPα) to induce leptin promoter activity. The mechanism by which β-catenin and TCF-4N coactivated C/EBPα appeared to involve p300, based upon synergy between these important transcriptional regulators. Consistent with TCF-4N′s redirecting the actions of β-catenin in cells, ectopic expression of TCF-4N in 3T3-L1 preadipocytes partially relieved the block of adipogenesis caused by β-catenin. Thus, we propose that TCF-4N inhibits coactivation by β-catenin of TCF/LEF transcription factors and potentiates the coactivation by β-catenin of other transcription factors, such as SF-1 and C/EBPα
    corecore