248 research outputs found

    The Securitization and Commodification of the Consumer-Citizen: Biopolitics of the Credit Card Industry

    Get PDF
    This thesis examines the biopolitics of the credit card industry and its governance of consumers through consumer-citizenship obligations and the transformation of consumer data into valuable information commodities. Biometrics and transactional data trails or ‘data doubles’ are used to securitize identity, define responsible citizenship, and to delimit rights and access to valuable social resources. Binding data to consumer-citizens enables the credit card industry to exercise biopower over consumer subpopulations through social sorting based on categories of risk and value. Subpopulations are then both acted upon and sold to third parties as ‘valuable information commodities.’ This thesis analyzes Visa and Mastercard Canadian credit card policies to determine how the consumer-citizenship is constituted and the extent to which Canadian federal legislation (Personal Information Protection and Electronic Documents Act enable) enables or constrain credit card companies exercise of biopower over consumer populations. This thesis concludes that credit card companies enact a form of biopolitical governance-at-a-distance through entrepreneurship and responsibilization. Corporate policies enable the aggregation and commodification of personal information, for purposes not explicitly made known to customers, in order to drive economic growth for the credit card industry and its ‘third parties.

    Habit plane determination from reconstructed parent phase orientation maps

    Full text link
    This study details the development and validation of a new algorithm that determines the dominant habit plane of a transformed child phase from orientation maps of a single planar cross-section. The method describes the habit plane in terms of its five-parameter grain boundary character and couples it to the specific orientation relationship of the identified orientation variant. The symmetry operations associated with the specific orientation relationship of the variants are applied to transform habit plane traces as determined in the specimen-fixed reference frame into the parent or child reference frame, allowing for the fitting of the habit plane. Our algorithm stands out by its robustness, computational efficiency, automation and ability to operate on fully transformed microstructures. Four automated methods for habit plane trace determination are proposed and compared. Detailed sensitivity analysis reveals that the proposed algorithm is exceptionally robust against poor accuracy in the measured traces and distortions in the orientation map, but more sensitive to inaccuracies propagated from parent grain reconstruction. Validation on a synthetic microstructure with a known habit plane and returned consistent results when applied to high and low carbon steels with different prior austenite grain sizes and orientation map resolutions. The habit planes were not significantly affected by the austenite grain sizes. The habit plane of the steel with 0.35 wt.% C was close to (111){\gamma} whereas the habit plane of steel with 0.71 wt.% C was closer to (575){\gamma}, in close agreement with previous work using two-surface stereological analysis and transmission electron microscopy-based trace analysis

    Targeted metagenomics of active microbial populations with stable-isotope probing

    Get PDF
    The ability to explore microbial diversity and function has been enhanced by novel experimental and computational tools. The incorporation of stable isotopes into microbial biomass enables the recovery of labeled nucleic acids from active microorganisms, despite their initial abundance and culturability. Combining stable-isotope probing (SIP) with metagenomics provides access to genomes from microorganisms involved in metabolic processes of interest. Studies using metagenomic analysis on DNA obtained from DNA-SIP incubations can be ideal for the recovery of novel enzymes for biotechnology applications, including biodegradation, biotransformation, and biosynthesis. This chapter introduces metagenomic and DNA-SIP methodologies, highlights biotechnology-focused studies that combine these approaches, and provides perspectives on future uses of these methods as analysis tools for applied and environmental microbiology

    Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids

    Get PDF
    The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from groundwater of six fracture zones from 180 to 2300aEuro-m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, Anaerobrancaceae- and Pseudomonadaceae-related operational taxonomic units (OTUs) form the core community in deep crystalline bedrock fractures in Outokumpu. Archaeal communities were mainly composed of Methanobacteriaceae-affiliating OTUs. The predicted bacterial metagenomes showed that pathways involved in fatty acid and amino sugar metabolism were common. In addition, relative abundance of genes coding the enzymes of autotrophic carbon fixation pathways in predicted metagenomes was low. This indicates that heterotrophic carbon assimilation is more important for microbial communities of the fracture zones. Network analysis based on co-occurrence of OTUs revealed possible "keystone" genera of the microbial communities belonging to Burkholderiales and Clostridiales. Bacterial communities in fractures resemble those found in oligotrophic, hydrogen-enriched environments. Serpentinization reactions of ophiolitic rocks in Outokumpu assemblage may provide a source of energy and organic carbon compounds for the microbial communities in the fractures. Sulfate reducers and methanogens form a minority of the total microbial communities, but OTUs forming these minor groups are similar to those found in other deep Precambrian terrestrial bedrock environments.Peer reviewe

    Metabolic Effects of Krill Oil are Essentially Similar to Those of Fish Oil but at Lower Dose of EPA and DHA, in Healthy Volunteers

    Get PDF
    The purpose of the present study is to investigate the effects of krill oil and fish oil on serum lipids and markers of oxidative stress and inflammation and to evaluate if different molecular forms, triacylglycerol and phospholipids, of omega-3 polyunsaturated fatty acids (PUFAs) influence the plasma level of EPA and DHA differently. One hundred thirteen subjects with normal or slightly elevated total blood cholesterol and/or triglyceride levels were randomized into three groups and given either six capsules of krill oil (N = 36; 3.0 g/day, EPA + DHA = 543 mg) or three capsules of fish oil (N = 40; 1.8 g/day, EPA + DHA = 864 mg) daily for 7 weeks. A third group did not receive any supplementation and served as controls (N = 37). A significant increase in plasma EPA, DHA, and DPA was observed in the subjects supplemented with n-3 PUFAs as compared with the controls, but there were no significant differences in the changes in any of the n-3 PUFAs between the fish oil and the krill oil groups. No statistically significant differences in changes in any of the serum lipids or the markers of oxidative stress and inflammation between the study groups were observed. Krill oil and fish oil thus represent comparable dietary sources of n-3 PUFAs, even if the EPA + DHA dose in the krill oil was 62.8% of that in the fish oil

    A Role for the Unfolded Protein Response (UPR) in Virulence and Antifungal Susceptibility in Aspergillus fumigatus

    Get PDF
    Filamentous fungi rely heavily on the secretory pathway, both for the delivery of cell wall components to the hyphal tip and the production and secretion of extracellular hydrolytic enzymes needed to support growth on polymeric substrates. Increased demand on the secretory system exerts stress on the endoplasmic reticulum (ER), which is countered by the activation of a coordinated stress response pathway termed the unfolded protein response (UPR). To determine the contribution of the UPR to the growth and virulence of the filamentous fungal pathogen Aspergillus fumigatus, we disrupted the hacA gene, encoding the major transcriptional regulator of the UPR. The ΔhacA mutant was unable to activate the UPR in response to ER stress and was hypersensitive to agents that disrupt ER homeostasis or the cell wall. Failure to induce the UPR did not affect radial growth on rich medium at 37°C, but cell wall integrity was disrupted at 45°C, resulting in a dramatic loss in viability. The ΔhacA mutant displayed a reduced capacity for protease secretion and was growth-impaired when challenged to assimilate nutrients from complex substrates. In addition, the ΔhacA mutant exhibited increased susceptibility to current antifungal agents that disrupt the membrane or cell wall and had attenuated virulence in multiple mouse models of invasive aspergillosis. These results demonstrate the importance of ER homeostasis to the growth and virulence of A. fumigatus and suggest that targeting the UPR, either alone or in combination with other antifungal drugs, would be an effective antifungal strategy

    EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013. Scientific Opinion on Dietary Reference Values for vitamin C

    Get PDF

    Biology and biotechnology of Trichoderma

    Get PDF
    Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications
    corecore