11 research outputs found

    Rice field cultivation on tin-mined land in Bangka Island, Indonesia

    Get PDF
    Changing from previously tin-mined land into rice fields is good practice for increasing food stability in the province of Bangka Belitung Islands, as most major staples currently come from other islands. This pioneering project of Bangka Goes Green is a corporate social responsibility of a private tin smelter consortium in Pangkalpinang. Rice fields with an average area of 750 m2 were planted for the first time in October 2008. Rice field cultivation on previously tin-mined land has not been practiced before in this province. About of 16 m3 mineral soil and 26 t of compost were added to each newly constructed plot. Each hectare of 105–110 day rice field produced about 4–5 t dried unhulled rice, yielding 2.4–3 t rice grain, 25 t straw, 1.2–1.5 t husk, and 0.4–0.5 kg bran. The yields of IR64 dried unhulled rice and rice grain was close to those from unmined soil, i.e. 4–5 t and 3 t/ha consecutively. From the heavy metal content perspective, the rice grain is considered safe with no significant difference in contents for mined and unmined husks. If construction costs, mineral soil supply and compost costs are excluded, the pilot project benefits are about 9–12.8 million Rp/ha, if these costs are inclusive it suffers losses of 10–13.7 million Rp/ha. The economic benefit of rice field cultivation cannot, therefore, compensate the environmental recovery of previously mined land. Apart from this agricultural success, considerable efforts now have to be made to modify the soil amendment procedures in order to increase the benefits which may cover environmental loss

    The global abundance of tree palms

    Get PDF
    Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≄10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    The global abundance of tree palms

    Get PDF
    Aim: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location: Tropical and subtropical moist forests. Time period: Current. Major taxa studied: Palms (Arecaceae). Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≄10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions: Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    The global abundance of tree palms

    Get PDF
    Aim: Palms are an iconic, diverse and often abundant component of tropical ecosys-tems that provide many ecosystem services. Being monocots, tree palms are evo-lutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon se-questration and storage) and in terms of responses to climate change. We quanti-fied global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.Location: Tropical and subtropical moist forests.Time period: Current.Major taxa studied: Palms (Arecaceae).Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≄10 cm diameter at breast height) abundance relative to co-occurring non-palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly asso-ciated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long-term climate stability. Life-form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non-tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above-ground biomass, but the mag-nitude and direction of the effect require additional work.Conclusions: Tree palms are not only quintessentially tropical, but they are also over-whelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    Succession on tin-mined land in Bangka Island

    Get PDF
    A quantitative study of floristic composition and vegetation structure was conducted at Bangka Island, Indonesia. Six different vegetation types were chosen, riparian forest, abandoned farmland, and natural regeneration of tin-mined lands of different ages: 0 and barren, 7, 11 and 38 years’ old tin-mined land. The seedling composition of the oldest tin-mined land was less than 2 % similar to that of a riparian forest. Natural regeneration on 7-year old tin-mined land began with herb species belonging to Cyperaceae, Poaceae, and Melastomaceae; followed by herb species belonging to Asteraceae and Poaceae on 11-year old; then by Poaceae and shrub species of Myrtaceae on 38-year old tin-mined land. Older tin-mined land tended to have less sand, higher nutrients and cation-exchange capacity. The phosphate solubilizing bacteria showed a gradual increase along with the more newly abandoned tin-mined land but decreased in barren tin-mined land, while the number of arbuscular mycorrhizal fungal spores showed the opposite

    Soils on exposed Sunda Shelf shaped biogeographic patterns in the equatorial forests of Southeast Asia

    Get PDF
    The marked biogeographic difference between western (Malay Peninsula and Sumatra) and eastern (Borneo) Sundaland is surprising given the long time that these areas have formed a single landmass. A dispersal barrier in the form of a dry savanna corridor during glacial maxima has been proposed to explain this disparity. However, the short duration of these dry savanna conditions make it an unlikely sole cause for the biogeographic pattern. An additional explanation might be related to the coarse sandy soils of central Sundaland. To test these two nonexclusive hypotheses, we performed a floristic cluster analysis based on 111 tree inventories from Peninsular Malaysia, Sumatra, and Borneo. We then identified the indicator genera for clusters that crossed the central Sundaland biogeographic boundary and those that did not cross and tested whether drought and coarse-soil tolerance of the indicator genera differed between them. We found 11 terminal floristic clusters, 10 occurring in Borneo, 5 in Sumatra, and 3 in Peninsular Malaysia. Indicator taxa of clusters that occurred across Sundaland had significantly higher coarse-soil tolerance than did those from clusters that occurred east or west of central Sundaland. For drought tolerance, no such pattern was detected. These results strongly suggest that exposed sandy sea-bed soils acted as a dispersal barrier in central Sundaland. However, we could not confirm the presence of a savanna corridor. This finding makes it clear that proposed biogeographic explanations for plant and animal distributions within Sundaland, including possible migration routes for early humans, need to be reevaluated
    corecore