1,102 research outputs found

    La tentativa inidonea o delito imposible

    Get PDF
    Within human behaviors is the crime, the same that is divided into different phases that contains the Iter Criminis. We could mention that initially there is a starting point, ideation and preparatory acts for the event to be carried out and finally a result that incurs a certain type. However, in the intermediate process there are circumstances that interrupt the action that is proposed to be carried out and that appear due to accidental, voluntary or natural causes. This is how the "failure" of the act and the non-consummation are translated into the so-called attempt.Dentro de las conductas humanas se encuentra el delito, el mismo que se encuentra dividido en distintas fases que contiene el Iter Criminis. Podríamos mencionar que inicialmente se encuentra un punto de inicio, ideación y actos preparatorios al evento a realizarse y finalmente un resultado que incurra en un determinado tipo. Sin embargo, en el proceso intermedio existen circunstancias que interrumpen la acción que se plantea realizar y que aparecen por causas accidentales, voluntarias o naturales. Es así como el “fracaso” del acto y la no consumación se traducen a la denominada tentativa

    Dental pulp pluripotent-like stem cells (DPPSC), a new stem cell population with chromosomal stability and osteogenic capacity for biomaterials evaluation

    Get PDF
    Background: Biomaterials are widely used to regenerate or substitute bone tissue. In order to evaluate their potential use for clinical applications, these need to be tested and evaluated in vitro with cell culture models. Frequently, immortalized osteoblastic cell lines are used in these studies. However, their uncontrolled proliferation rate, phenotypic changes or aberrations in mitotic processes limits their use in long-term investigations. Recently, we described a new pluripotent-like subpopulation of dental pulp stem cells derived from the third molars (DPPSC) that shows genetic stability and shares some pluripotent characteristics with embryonic stem cells. In this study we aim to describe the use of DPPSC to test biomaterials, since we believe that the biomaterial cues will be more critical in order to enhance the differentiation of pluripotent stem cells. Methods: The capacity of DPPSC to differentiate into osteogenic lineage was compared with human sarcoma osteogenic cell line (SAOS-2). Collagen and titanium were used to assess the cell behavior in commonly used biomaterials. The analyses were performed by flow cytometry, alkaline phosphatase and mineralization stains, RT-PCR, immunohistochemistry, scanning electron microscopy, Western blot and enzymatic activity. Moreover, the genetic stability was evaluated and compared before and after differentiation by short-comparative genomic hybridization (sCGH). Results: DPPSC showed excellent differentiation into osteogenic lineages expressing bone-related markers similar to SAOS-2. When cells were cultured on biomaterials, DPPSC showed higher initial adhesion levels. Nevertheless, their osteogenic differentiation showed similar trend among both cell types. Interestingly, only DPPSC maintained a normal chromosomal dosage before and after differentiation on 2D monolayer and on biomaterials. Conclusions: Taken together, these results promote the use of DPPSC as a new pluripotent-like cell model to evaluate the biocompatibility and the differentiation capacity of biomaterials used in bone regeneration

    Lespesia melloi sp. nov. (Diptera: Tachinidae) from Brazil, a \ud parasitoid of Xanthopastis timais (Lepidoptera: Noctuidae)

    Get PDF
    A new species of the New World genus Lespesia, Lespesia melloi sp. nov. (Diptera: Tachinidae), \ud is described from southeastern Brazil. The species is reported here as a parasitoid of Xanthopastis \ud timais (Cramer, 1782) (Lepidoptera: Noctuidae). The caterpillars of this noctuid feed on leaves \ud and bulbs of amaryllis (Amaryllidaceae) in Brazil.The authors are grateful to Carlos Lamas (MZSP curator) for allowing access to the Tachinidae collection, and two anonymous reviewers for their comments and suggestions. SSN thanks the financial support from FAPESP (proc. n. 2007/50836-7 and 2013/05131-6)

    Synergistic Combination of Antimicrobial Peptides and Cationic Polyitaconates in Multifunctional PLA Fibers

    Get PDF
    Combining different antimicrobial agents has emerged as a promising strategy to enhance efficacy and address resistance evolution. In this study, we investigated the synergistic antimicrobial effect of a cationic biobased polymer and the antimicrobial peptide (AMP) temporin L, with the goal of developing multifunctional electrospun fibers for potential biomedical applications, particularly in wound dressing. A clickable polymer with pendent alkyne groups was synthesized by using a biobased itaconic acid building block. Subsequently, the polymer was functionalized through click chemistry with thiazolium groups derived from vitamin B1 (PTTIQ), as well as a combination of thiazolium and AMP temporin L, resulting in a conjugate polymer-peptide (PTTIQ-AMP). The individual and combined effects of the cationic PTTIQ, Temporin L, and PTTIQ-AMP were evaluated against Gram-positive and Gram-negative bacteria as well as Candida species. The results demonstrated that most combinations exhibited an indifferent effect, whereas the covalently conjugated PTTIQ-AMP displayed an antagonistic effect, potentially attributed to the aggregation process. Both antimicrobial compounds, PTTIQ and temporin L, were incorporated into poly(lactic acid) electrospun fibers using the supercritical solvent impregnation method. This approach yielded fibers with improved antibacterial performance, as a result of the potent activity exerted by the AMP and the nonleaching nature of the cationic polymer, thereby enhancing long-term effectiveness.This work was funded by the MICINN (PID2019-104600RB- I00 and PID2021-123553OA-I00), the Agencia Estatal de Investigación (AEI, Spain), and Fondo Europeo de Desarrollo Regional (FEDER, EU) and by CSIC (LINKA20364). A. Chiloeches acknowledges MICIU for his FPU fellowship FPU18/01776. Cesar de la Fuente-Nunez holds a Presidential Professorship at the University of Pennsylvania and acknowl- edges funding from the Procter & Gamble Company, United Therapeutics, a BBRF Young Investigator Grant, the Nemirovsky Prize, Penn Health-Tech Accelerator Award, and the Dean’s Innovation Fund from the Perelman School of Medicine at the University of Pennsylvania. Research reported in this publication was supported by the Langer Prize (AIChE Foundation), the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM138201, and the Defense Threat Reduction Agency (DTRA; HDTRA11810041, HDTRA1-21-1-0014, and HDTRA1-23-1-0001). D. Placha and J. Zagora acknowledge the Doctoral grant competition VSB-Technical University of Ostrava (reg. no. CZ.02.2.69/0.0/0.0/19_073/0016945) with- in the Operational Programme Research, Development and Education, under project DGS/INDIVIDUAL/2020-001 “Development of antimicrobial biobased polymeric material using supercritical fluid technology”

    Targeting Protein Kinase C in Glioblastoma Treatment

    Get PDF
    Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor and is associated with a poor prognosis. Despite the use of combined treatment approaches, recurrence is almost inevitable and survival longer than 14 or 15 months after diagnosis is low. It is therefore necessary to identify new therapeutic targets to fight GBM progression and recurrence. Some publications have pointed out the role of glioma stem cells (GSCs) as the origin of GBM. These cells, with characteristics of neural stem cells (NSC) present in physiological neurogenic niches, have been proposed as being responsible for the high resistance of GBM to current treatments such as temozolomide (TMZ). The protein Kinase C (PKC) family members play an essential role in transducing signals related with cell cycle entrance, differentiation and apoptosis in NSC and participate in distinct signaling cascades that determine NSC and GSC dynamics. Thus, PKC could be a suitable druggable target to treat recurrent GBM. Clinical trials have tested the efficacy of PKC beta inhibitors, and preclinical studies have focused on other PKC isozymes. Here, we discuss the idea that other PKC isozymes may also be involved in GBM progression and that the development of a new generation of effective drugs should consider the balance between the activation of different PKC subtypes

    Intravenous thrombolytic treatment in the oldest old

    Get PDF
    Background and Purpose. Intravenous thrombolysis using tissue plasminogen activator is safe and probably effective in patients >80 years old. Nevertheless, its safety has not been specifically addressed for the oldest old patients (≥85 years old, OO). We assessed the safety and effectiveness of thrombolysis in this group of age. Methods. A prospective registry of patients treated with intravenous thrombolysis. Patients were divided in two groups (<85 years and the OO). Demographic data, stroke aetiology and baseline National Institute Health Stroke Scale (NIHSS) score were recorded. The primary outcome measures were the percentage of symptomatic intracranial haemorrhage (SICH) and functional outcome at 3 months (modified Rankin Scale, mRS). Results. A total of 1,505 patients were registered. 106 patients were OO [median 88, range 85–101]. Female sex, hypertension, elevated blood pressure at admission, cardioembolic strokes and higher basal NIHSS score were more frequent in the OO. SICH transformation rates were similar (3.1% versus 3.7%, P = 1.00). The probability of independence at 3 months (mRS 0–2) was lower in the OO (40.2% versus 58.7%, P = 0.001) but not after adjustment for confounding factors (adjusted OR, 0.82; 95% CI, 0.50 to 1.37; P = 0.455). Three-month mortality was higher in the OO (28.0% versus 11.5%,P < 0.001). Conclusion. Intravenous thrombolysis for stroke in OO patients did not increase the risk of SICH although mortality was higher in this groupThis work is part of the Spanish collaborative research network RENEVAS (Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, RD06/0026/008, RD07/0026/2003

    Geometric deep learning as a potential tool for antimicrobial peptide prediction

    Get PDF
    Antimicrobial peptides (AMPs) are components of natural immunity against invading pathogens. They are polymers that fold into a variety of three-dimensional structures, enabling their function, with an underlying sequence that is best represented in a non-flat space. The structural data of AMPs exhibits non-Euclidean characteristics, which means that certain properties, e.g., differential manifolds, common system of coordinates, vector space structure, or translation-equivariance, along with basic operations like convolution, in non-Euclidean space are not distinctly established. Geometric deep learning (GDL) refers to a category of machine learning methods that utilize deep neural models to process and analyze data in non-Euclidean settings, such as graphs and manifolds. This emerging field seeks to expand the use of structured models to these domains. This review provides a detailed summary of the latest developments in designing and predicting AMPs utilizing GDL techniques and also discusses both current research gaps and future directions in the field

    Process intensification for post combustion CO₂ capture with chemical absorption: a critical review

    Get PDF
    The concentration of CO₂ in the atmosphere is increasing rapidly. CO₂ emissions may have an impact on global climate change. Effective CO₂ emission abatement strategies such as carbon capture and storage (CCS) are required to combat this trend. Compared with pre-combustion carbon capture and oxy-fuel carbon capture approaches, post-combustion CO₂ capture (PCC) using solvent process is one of the most mature carbon capture technologies. There are two main barriers for the PCC process using solvent to be commercially deployed: (a) high capital cost; (b) high thermal efficiency penalty due to solvent regeneration. Applying process intensification (PI) technology into PCC with solvent process has the potential to significantly reduce capital costs compared with conventional technology using packed columns. This paper intends to evaluate different PI technologies for their suitability in PCC process. The study shows that rotating packed bed (RPB) absorber/stripper has attracted much interest due to its high mass transfer capability. Currently experimental studies on CO₂ capture using RPB are based on standalone absorber or stripper. Therefore a schematic process flow diagram of intensified PCC process is proposed so as to motivate other researches for possible optimal design, operation and control. To intensify heat transfer in reboiler, spinning disc technology is recommended. To replace cross heat exchanger in conventional PCC (with packed column) process, printed circuit heat exchanger will be preferred. Solvent selection for conventional PCC process has been studied extensively. However, it needs more studies for solvent selection in intensified PCC process. The authors also predicted research challenges in intensified PCC process and potential new breakthrough from different aspects

    Integrated catalytic adsorption steam gasification in a bubbling fluidized bed for enhanced H2 production: perspective of design and pilot plant experiences

    Get PDF
    It is important to build knowledge about the design of an integrated catalytic adsorption (ICA) steam gasification process in a bubbling fluidized bed, which can reduce CO2 content with enhanced hydrogen production. The value of this study is its presentation of detailed design considerations for the performance evaluation of an ICA system using palm oil waste as feedstock. The main advantage of using ICA gasification systems is the CO2 adsorption through a carbonation reaction (using CaO), which helps the water gas shift reaction to move forward. The activity of a catalyst improves steam methane reforming in parallel, which not only produces additional hydrogen but also releases CO to enhance the activity of the water gas shift reaction. The performance of the developed system has shown &lt;1% of temperature variation inside the reactor, which suggested a positive role for exothermic reactions between reactive bed material (CaO) and CO2 in the product gas. The low pressure drop in the gasifier (100–130 mbar) further strengthens the design strategy for the ICA gasification system for hydrogen production. Challenges encountered during the pilot plant operations, and their potential solutions, are discussed to optimize the operation, especially for downstream equipment and auxiliaries
    corecore