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ABSTRACT  

It is important to build knowledge on the design of an integrated catalytic adsorption (ICA) 

steam gasification process in a bubbling fluidized bed to reduce CO2 content with enhanced 

hydrogen production. The news value of this study is presentation of detailed design 

considerations for performance evaluation of ICA system utilizing palm oil wastes as 

feedstock. The main advantage of utilizing ICA gasification system is the CO2 adsorption 

through carbonation reaction (using CaO) that help water gas shift reaction to move forward. 

Whereas the catalyst activity improves steam methane reforming in parallel which not only 

produces additional hydrogen but also releases CO to enhance the activity of water gas shift 

reaction. The performance of the developed system has shown least temperature variation (< 

1%) inside reactor which inferred the positive role of exothermic reactions between reactive 

bed material (CaO) and CO2 in the product gas. The low-pressure drop in the gasifier (100-130 

mbar) further strengthens the presented design strategy for ICA gasification system for 

hydrogen production. Further, the challenges encountered during the pilot plant operations and 

their potential solutions have been discussed to improve and optimize the operation, especially 

for downstream equipment and auxiliaries. 
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1. Introduction  

Concerted efforts have been made to develop advance biomass gasification technologies in the 

last couple of decades. Present biomass gasification technologies are based on coal gasification 

processes but with slight modification due to the high volatile matter and low temperature of 

operation. These technologies mainly comprised of a fixed bed, fluidized bed entrained flow 

reactors, plasma reactors and rotary kiln reactors 1. However, fixed bed, fluidized bed and 

entrained flow gasifiers are mostly utilized for hydrogen production from biomass gasification 

2. Fluidized bed (FB) gasifiers have proven to be the efficient for combustion and gasification 

processes due to their high mass and heat transfer capability. The FB gasifiers are considered 

to be an effective choice for biomass gasification as they accept a wide variety of biomass, 

produce high carbon conversion rates and provide uniform temperature distribution in the 

gasifier 3. These types of gasifiers accept small feed size compared to the fixed bed gasifiers, 

and they are capable of handling higher and lower quality fuels 4. 

Recent application of catalyst and in situ CO2 adsorption to enhance hydrogen from biomass 

gasification makes the process more viable for commercial scale. Udomsirichakorn and Salam 

5 review biomass steam gasification technologies utilizing in situ CO2 adsorption techniques to 

produce hydrogen. Most of these studies 5 comprise fixed and fluidized beds including a dual 

fluidized bed reactor. Many researchers 6-8 have developed the concept of gasification via 

chemical looping for hydrogen production utilizing CaO as an adsorbent which implied 

regeneration of the adsorbent in a different reactor. More recently, the development of fluidized 

bed gasifier and sorption-enhanced reforming process (SERP) has been proposed for biomass 

steam gasification to enhance hydrogen production 9. This system has worked on gasification 
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followed by SERP contains a mixture of Ni-based catalyst and CaO sorbent. New 

developments demonstrate the tremendous efforts that are being made to enhance the quality 

and quantity of renewable hydrogen from biomass gasification. The efforts are mainly focused 

on reducing the number of process units by introducing novel catalyst 10, 11, CO2 sorption 6-8 or 

coupling of both in the same reactors (after gasification step) 9 and/or in separate reactors (after 

the pyrolysis step) 12. Therefore, development of a single gasifier utilizing catalyst and CO2 

adsorbent in the same bed will be worthwhile to investigate. 

Based on our previous research work, there are advantages of the process to operate in a single 

unit in order to minimize the capital cost by avoiding additional downstream units 13, 14. 

Secondly, the benefits of utilizing methane reforming catalyst and CO2 sorbent together in one 

bed and a single reactor can be understood by considering the main biomass steam gasification 

reactions with in-situ CO2 adsorbent (Equations 1-4). The capturing of CO2 takes place via 

carbonation reaction (Eq. 4) accelerates the water gas shift reaction towards enhanced hydrogen 

production under Le Chatelier’s principle. The amounts of CO react in water gas shift (Eq. 3) 

comes from steam methane reforming (Eq. 2) and char gasification (Eq. 1), and provides an 

opportunity to accelerate the former reaction through the enhanced activity of later reactions. 

Steam methane reforming and char gasification are both endothermic reactions and the 

activities are heavily depending on the high temperature. However, temperature > 725°C for 

biomass gasification with in-situ CO2 adsorbent in the bed is a matter of concern due to reverse 

carbonation especially when CaO is used as an adsorbent 15-18. Therefore, using steam methane 

reforming catalyst in the bed not only enhance hydrogen production but also provide more CO 

(even at low temperature) to allow the water shift reaction to move in a forward direction.  

Char gasification reaction (CGR),   

C + H2O → CO + H2         ∆H = 131.5 kJ/mol                (1) 
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Steam methane reforming (SMR),  

CH4 + H2O ↔ CO + 3H2    ∆H = 206 kJ/mol                 (2) 

Water gas shift reaction (WGSR), 

CO + H2O → CO2 + H2     ∆H = - 41 kJ/mol                        (3) 

Carbonation reaction  

CO2 + H2O → CaCO3   ∆H = - 170.5 kJ/mol                    (4) 

The present study is a continuation of our research work to develop integrated catalytic 

adsorbent (ICA) steam gasification using the bubbling fluidized bed. A part of ICA steam 

gasification process evaluates the optimum process conditions for hydrogen production, has 

been published 13, 14, 19 whereas detail process and design development, and operational 

challenges of this pilot scale study are not reported yet. The news value of this study is the 

design considerations and pilot plant experiences of a bubbling fluidized bed gasification 

system for enhanced H2 production that utilizes a catalyst (Ni-based) and adsorbent (CaO) in a 

single bed inside the reactor. The design strategy is carried out by combining the reactor 

hydrodynamics and reaction based steam required for the gasification reactions. A number of 

parameters e.g. minimum fluidization velocity, transport disengaging height, maximum bubble 

diameter, bed to distributor plate pressure drop ratio are investigated to evaluate reactor 

dimensions and distributor plate design. The performance of the developed pilot scale ICA 

gasification system is carried out through temperature pressure profiles and velocity-pressure 

diagrams to ensure sufficient fluidization conditions in the bed. The issues encountered during 

the system operation and the potential solutions have been discussed to improve and optimize 

the operation, especially for downstream equipment and auxiliaries. The impact of vital 

performance parameters, such as product gas composition, hydrogen yield and gas heating 
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values are further discussed. The study is intended to assist the scientific community, 

companies, governmental energy agencies and relevant stakeholders to further develop 

efficient ICA steam gasification process for enhanced H2 production. 

2. Methodology and key design parameters 

2.1 ICA steam gasification system 

Fig. 1 shows a process diagram of pilot scale fluidized bed ICA steam gasification system. The 

gasification system mainly comprises of fluidized bed reactor with external electric heaters, 

biomass feeding system, steam generator and superheater, cyclone solid separator, wet 

scrubber, water separator, and gas analyzing the system. After the gasifier, product gas passes 

through the cyclone to separate solid particles from the product gas. The product gas then 

passes through the scrubber and attains a temperature less than 40 °C and then followed by a 

separator to remove any final traces of water in the product gas stream. The gas sampling point 

is located at the exit of the water separator. The gas analysing system consists of Gas 

Chromatography (Teledyne 7500, Teledyne Analytical Instrument) with Infrared (IR) type 

detector. Hydrogen and nitrogen are detected by Gas Chromatography utilizing Molecular 

Sieve 5A column (Teledyne 4060, Teledyne Analytical Instrument) with Thermal Conductive 

Detector (TCD).  The product gas is measured every 6 minutes at the sampling point located 

after the water separator. 

 

ICA gasification system is developed to operate at a temperature range of 600-750 °C, under 

atmospheric pressure. This temperature range provides an active carbonation region when CaO 

is used as a bed material to adsorb CO2 
20. 

2.2 Materials and gasification agent  
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 Palm kernel shell (PKS) is selected as the feedstock for hydrogen production via ICA steam 

gasification. It is estimated that a total of 12.8 Mt of PKS are generated in 2015 by Malaysia 

and Indonesia 21, 22 which are the largest oil palm producers in the world 23 . Based on its  

abundance and physical properties i.e. high proportion of fixed carbon, volatile matter, and low 

ash and moisture content, PKS has the potential to enhance hydrogen production via 

gasification 24. The ultimate analysis of PKS has performed in LECO CHNS 932 elemental 

analyser. A standard sample of approximately 2 mg was put in the silver capsule and analysed. 

The furnace temperature was maintained at 1000°C. The proximate analysis (volatile matter, 

ash content, and fixed carbon) was determined based on a dry basis. For ash content, ASTM 

D-3175-01 procedure was used to evaluate the ash content in the biomass. The sample was 

then cooled and weighed. The volatile matter was determined by following ASTM E-872 

procedure. Fixed carbon was determined by subtracting the sum of volatiles matter and ash 

content in the biomass based on the dry basis. The calorific value of PKS was determined in 

IKA C5000 oxygen bomb calorimeter. The ASTM E711-87 procedure was considered to 

determine the calorific value.  The physical properties of PKS are listed in Table 1.  

The present work proposes in situ CO2 adsorption and emphasis on the reactive bed particle 

which can provide smooth fluidization as well as effective CO2 absorption in the bed. Naturally 

occurring metal oxides (MO), abundant in natural rocks, are proved to be low-cost CO2 

adsorbent material 25 through the following reaction.  

MO + CO2 ↔ MCO3            (5) 

However, decomposition temperature (calcination temperature) of these metal carbonates 

(MCO3) i.e. MgCO3 (385˚C), ZnCO3 (340˚C) and MnCO3 (440˚C) is low which makes them 

unsuitable for in situ CO2 capture in biomass gasification 26. Among these metal oxides, the 

decomposition temperature for CaCO3 is 800˚C which makes CaO more suitable as a sorbent 

27. Besides, CaO can also be extracted from different sources i.e. eggshell 28 and cockle shell 
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29 in the form of CaCO3 which is further calcined and used as a CaO for CO2 adsorption. In the 

present study, Quicklime (CaO) is used as the bed particle to adsorb CO2 at the gasification 

temperature. The quicklime was purchased from Universal Lime Sdn. Bhd., Malaysia. The 

main source of the quicklime is natural occurring limestone which is abundant in the local area 

of Perak, Malaysia. The physical properties and chemical composition 30 is shown in Table 2. 

Based on their properties, these materials are well represented by the Geldart particle B (sand 

like) which represents good fluidization characteristics to achieve better heat and mass transfer 

rates to keep homogeneous temperature all over the bed.  

Steam as an oxidizing agent has gained a high reputation due to the resulting hydrogen-rich 

gas production 26. The properties of steam for the case are given in Table 2. Steam gasification 

produces 5 times more hydrogen content than air gasification in fluidized bed gasifier 31 and 

thus considered as the gasification medium in the present study.  

Nickel (Ni) is the most widely used catalyst in steam and dry reforming processes. There is a 

significant body of work reported on the application of Ni catalysts in biomass gasification 32, 

33. In the present study, purified Ni powder with 99.5 % purity and average particle size of 10 

µm is used. The Ni catalyst is purchased from Merck KGaA, Germany. Throughout the ICA 

gasification runs, Ni catalyst is mixed with palm kernel shell (PKS) at a fixed ratio of 0.1 

(wt./wt.) and introduce to the gasifier via the biomass feeding system. 

2.3 Reactor diameter evaluation 

Fluidized bed gasifier design initially considers the evaluation of the gasifier diameter. Steam 

as a gasification agent also has an additional role of fluidizing the bed. This dual role needs to 

be balanced. Fig. 2 shows the diameter estimation process through the combination of 

minimum fluidization velocity (Umf) as a hydrodynamics parameter and total steam 

requirement as a reactant for the gasification reactions. The present study considers that the 
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bubbling fluidized bed is characterized by a superficial gas velocity (U) of the order of a Umf 

34. Similarly, the total steam required for Umf is a few orders of steam required for gasification 

reaction.  The evaluation of Umf is based on the physical properties of the bed particles and 

steam. These properties include average particle diameter, particle density, bulk density, and 

steam density and viscosity. The density and viscosity of steam are considered at the 

fluidization conditions of 750 °C and 1 atm 35, 36 (Table 2).  

The minimum fluidization velocity (Umf) is a basic design parameter to define fluidization 

conditions in the bed. The modified form of Ergun’s equation in the form of Archimedes 

number (Ar) for the pressure drop across a fixed bed at minimum fluidization conditions is 

used to estimate Umf  
37 and given by Equation (6):  
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Where Ar can be calculated as:  

gdAr fp
fb 







 


2
3




                          (7)  

The Reynolds number at the minimum fluidization condition is: 


 mffp

mf

Ud
Re                      (8)  

Where db and ρb are the bed particle diameter (m) and density (kg/m3), respectively, ρf and µ are 

the viscosity (Pa. s) and density (kg/m3) of steam, g is the acceleration due to gravity (m/s2), εmf 

is the bed voidage at the minimum fluidization velocity and b is the bed particle sphericity.   

Bed voidage and sphericity must be known at minimum fluidization to estimate Umf using 
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Equations (6), (7) and (8). These basic equations give more reliable predictions of Umf as 

compared to empirical expressions 37 and thus they are used herein. εmf  is calculated from the 

following expression 38: 

1
p

b
mf 

                               (9) 

The sphericity for CaO is calculated from previously published work 39 using Equations (6)-

(8) for known minimum fluidization velocity. The sphericity determined value is 0.43 which 

is in a good agreement with the value reported by Basu 40.   

The steam, needed for the gasification reactions as the reactant is evaluated. These main 

reactions are char gasification, methane steam reforming and the water gas shift as represented 

by Equations (1- 4): 

The total amount of steam required (Stotal) for gasification is given by: 

     WGSRSMRCGRTotal SSSS                  (10) 

The following scheme is considered to calculate the amount of steam required for each of the 

reactions involved: 

 CGR: Char is produced according to the fixed carbon content of biomass from the 

proximate analysis 41. This char is expected to participate in the CGR and thus can be 

estimated directly from the given biomass feed rate.   

 SMR: The biomass devolatilization produces gases such as H2, CO, CO2, CH4 and H2O 42. 

The amount of CH4, released from biomass, is estimated based on the proximate and 

ultimate analysis. The total elemental carbon content in biomass is 49.74 wt% which 

consists of fixed carbon (C) and volatile matter (assumed to be CH4 only). The remaining 

carbon portion in the volatile matter is estimated by subtracting the fixed carbon from the 

total elemental carbon. 
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 WGSR: The amount of steam available for the water gas shift reaction is estimated from 

CO produced by char gasification and steam methane reforming reactions. The amount of 

CO in the water gas shift reaction is considered as the sum of the CO generated from char 

gasification and steam methane reforming reactions. 

 2.4 Gasifier Height 

The height of the fluidized bed reactor is calculated based on the transport disengaging height 

(TDH) [24], the height over which only fine particles are carried over, and the bed height (Fig. 

3) 37. The equation of reactor height can be written as: 

height  BedTDHheight Reactor                 (11)          

Above the TDH, the rate of carryover of fine particles is constant. Moreover, the height of 

which gas exits from the fluidized bed reactor should be higher than TDH to minimize the 

entrainment of solid particles. 

Several empirical expressions are used to determine the TDH based on the maximum bubble 

diameter. Among these, Horio’s empirical equation and Zenz’s graphical presentation are more 

reliable 38. However, the graphical presentations are only available for fine particles 

corresponding to Geldart particles A 37; whereas the present study considered Geldart particles 

B. The equation presented by Horio 38 for TDH is considered in the present case which can be 

used for Geldart particles B:  

                             0.5
bmD4.47TDH                                          

 (12) 

Where Dbm is the maximum bubble diameter on the surface of the bed. 
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The maximum bubble diameter (Dbm) is an important parameter to avoid slugging in bubbling 

fluidized bed reactors. The mass transfer rate between the bubble and emulsion phases is an 

important parameter that influences the overall reaction rate.  

In the present study, Mori and Wen’s correlation, 43 is used to determine the Dbm. This 

correlation is valid for both Geldart types B and D particle classification:  

                                        2/5
0.652D A U Ubm mf

 
  

                   (13) 

Where U is the superficial gas (steam) velocity (m/s) and A is the bed cross-sectional area (m2). 

Maximum bubble diameter increases with increasing superficial velocity and bed height 40, 44. 

For better fluidization conditions in the bed, it is generally recommended that the ratio of bed 

height (Z) to bed diameter (D) needs to be < 2.0 to avoid slugging 45. Slugging occurs when the 

bubble reaches the size of the bed diameter. At this stage, the bubble passes through the bed as 

a slug and fluidization conditions are not sustained in the reactor 38. In the present study, a ratio 

of 1.0 is considered to facilitate a good fluidization region and also to keep the bubble size 

sufficiently small to avoid slugging. 

2.5 Distributor plate design 

The distributor plate plays a vital role in generating homogeneous fluidization conditions all 

over the bed. It is important that the fluidized bed distributor is properly designed to ensure 

uniform distribution of gas flow. Better design approaches of distributor plates for good 

fluidization depends on a certain ratio between the pressure drop across the distributor plate 

and bed. A perforated plate type distributor is used due to its fabrication simplicity, hole size 

modification and ability to be cleaned easily  
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Zuiderweg et al. 37 used a rule of thumb to obtain the pressure drop across the distributor plate. 

They considered 0.2-0.4 ratio for the distributor pressure to the bed pressure drop. However, 

this approach gives a high-pressure drop inside the reactor 37 and is not considered in the present 

study. Qureshi et al. 46 developed an empirical relationship for the ratio of distributor pressure 

to bed pressure drop (Rc), and showed stable and unstable operational regions of the distributor 

using the following expression: 















 

Z
D

Rc

5.0
exp102.001.0           (14) 

Where D is the bed diameter (m) and Z is the bed height (m). The aspect ratio of the bed (D/Z) 

is assumed as 1.0 to ensure a stable operating region for the distributor 46. The pressure drop 

across the bed at superficial velocity (5 times of Umf in the present study) is then calculated 

from Equation (14) 37. 

     fpb ZP   1               (15) 

Where ε refers to bed voidage and Z is the bed height at the superficial gas velocity. Bed 

voidage at superficial velocity can be considered equal to the bed voidage at minimum 

fluidization (ε=εmf) because no change in pressure drop can be seen for Geldart B type particles, 

if the gas velocity rises over the minimum fluidization velocity 38. The distributor pressure drop 

is determined using Equation (13) which is further used to determine the total number of 

orifices needed in the perforated distributor plate (Table 3). 

A general design procedure for estimating the total number of orifices on a triangular pitch 37 

is followed:   

 Number of orifice (Nor) in the distribution plate is determined using the following 

 expression:  
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
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Qmf, Aor, Uor are the minimum fluidization volumetric flow rate (m3/h), area of each orifice (m2) 

and gas velocity (m/s) through the orifice in the distributor plate respectively. All of these 

quantities are dependent on the properties of the fluidizing agent (density and viscosity of 

steam).  

 The gas velocity through the orifices is calculated using: 


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
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


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

f

d
ordor

P
CU
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                 (17) 

Where ∆Pd is the pressure drop (bar) across the distributor plate. This is calculated based on 

the pressure in the bed as ∆Pd = 0.089 ∆Pb, where 0.089 represents Rc (Equation 14). Constant, 

Cdor, is the drag coefficient.  

 The drag coefficient, Cdor (dimensionless), and Vessel Reynolds number (Re(v)) based on 

the diameter of the vessel (reactor) are related as follows:  

  










 DU

R or
fve                        (18) 

The total number of orifices in the distributor plate is then evaluated.  

3. Results and Discussions  

3.1 Fluidized bed gasifier configuration  

A schematic of the fluidized bed gasifier is shown in Fig. 4. Inconel 625 is a nickel-chromium 

alloy preferred over stainless steel 316 as the material of construction as it has excellent 

corrosion and heat resistance properties.   

The outputs from the reactor design process are the gasifier diameter, height of the fluidized 

bed reactor and the distributor plate configuration. The reactor dimensions evaluated in the 
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design process are listed in Table 4. As shown in Fig. 4, the freeboard is kept b than the bed 

area size to reduce solid entrainment from the gasifier and to provide a longer residence time 

of the product gas to enhance tar cracking 47. The freeboard of the reactor is expanded up to a 

diameter of 0.19 m with a height of 0.3 m.  

The location of feeding the biomass into the gasifier is an important criterion. It is beneficial 

for large systems to feed the biomass at the bottom, nearer to the distributor plate. This type of 

design is recommended to reduce tar and char content 48. In the present study, the feed-in point 

is 0.20 m above the distributor plate. The fluidized bed mainly comprises of three parts: i) 

region below the distributor plate, called the plenum, ii) the main bed region above the 

distributor plate and iii) the top expanded zone is known i.e. freeboard. The main bed section 

is the section where the bed material is fluidized and the entire gasification reactions take place. 

This region also contains the biomass feed-in point. The main gasifier is equipped with three 

internal temperature indicators (TI) to monitor temperature at 1) just below the distributor plate 

and 0.1 m from the bottom of the gasifier, 2) located in the bed and 0.85 m from the bottom of 

the gasifier, and 3) situated in the freeboard and 1.85 m from the bottom section. The pressure 

differential indicator is provided between the point below the distributor plate and in the 

freeboard section to monitor the total pressure drop across the reactor. The additional air inlet 

is provided to ensure post-experiment combustion to remove any unwanted carbon in the 

gasifier and downstream. Similarly, N2 is used to purge the gasification system to remove 

entrapped gases before the start of each experiment. 

3.2 Gasifier operation  

3.2.1 Temperature and pressure profiles  

The fluidized bed gasifier as designed, built and described in this paper, is equipped with three 

internal TIs at different locations as shown in Fig. 4. Temperature variation at these points 
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needs to be monitored to avoid large variation of temperature within the reactor. Temperature 

variation in the bed is studied at three different temperature levels i.e. 600, 675 and 750°C. 

Temperature profiles are plotted with respect to time for 60 min, the total time of gasification 

considered for all of the experiments in the present study. Each temperature reading is taken at 

6 min intervals.     

Fig. 5 shows the temperature profiles in the bed (TI (2)) for the temperature of 600, 675 and 

750°C over 60 minutes. The analysis shows no significant temperature variation in the bed for 

the ICA steam gasification system. Standard variations of the temperature readings are +5.0°C, 

+5.8°C and +6.0°C for 600°C, 675°C and 750°C, respectively. Thus, the variation is small, 

(<1%) and this is due to the carbonation reaction, an exothermic reaction, which produces heat 

for the endothermic gasification reactions. Similar observations are reported by other 

researchers 49 as well. 

The temperature profiles at the three different locations in the fluidized bed gasifier can be seen 

in Fig. 6. The data shows the average value over 60 min.  Attempts are made to keep the 

temperature constant throughout the fluidized bed reactor by using an external heating system. 

Amongst the three locations, significant variation is observed just below the distributor plate 

particularly at high temperature (675°C and 750°C) due to the steam injection at a lower 

temperature (250-300°C). The results show no significant variation in the freeboard 

temperature over the considered range for each experiment.  

Initially, the pressure drop variation is measured with respect to time for each velocity i.e. 0.15 

(3Umf), 0.21 (4Umf) and 0.26 m/s (5Umf). A velocity to pressure drop diagram is then generated 

at a given fluidization velocity. The average pressure drop during 60 min gasification operation 

is then plotted with respect to fluidization velocity. The pressure drop is measured through the 
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pressure differential indicator (PDI) between the points located below the distributor plate and 

the freeboard region, as shown in Fig. 4.     

Fig. 7 shows the pressure drop fluctuation with respect to time for different fluidization 

velocities i.e. 0.15, 0.21 and 0.26 m/s which represent 3, 4 and 5 times the fluidization velocity 

in the fluidized bed gasifier. The pressure drop evaluated using Equation (14) is shown for 

comparison (dotted line) which is based on the diameter to height ratio of 1.0. The analysis 

shows that total pressure drop increases as the fluidization velocities increases. The maximum 

pressure drop is observed at high fluidization velocity. However, low fluidization velocity 

produces a lower pressure drop and shows less fluctuation as compared to high fluidization 

velocities i.e. 0.21 m/s and 0.26 m/s.  

Fig. 8 shows the relationship of pressure drop to fluidization velocity in the fluidized bed 

gasifier. The pressure drop represents an average value over 60 min of operational time. The 

analysis shows that the average pressure drop observed is in the range of 100-130 mbar by 

varying fluidization velocity in the range of 0.15-0.26 m/s. It shows that the pressure drop 

variation in the present study is not significant by varying the fluidization velocity between 

0.15-0.26 m/s for the ICA steam gasification system. The bed starts to expand at the onset of 

minimum fluidization velocity, and a further increase in fluidization velocity does not show 

any significant increase in the pressure drop.  

    3.3 Gasifier operational challenges and solution 

The following section elaborates operational problems observed in ICA steam gasification 

utilizing PKS as the feedstock. It also highlights the appropriate remedy for the associated 

problems related to the gasification system.  

3.3.1 Downstream Clogging  
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The product gas carries tar (high hydrocarbon), excess steam, fine char and solid particles 

separated from the bed material due to attrition. The drastic decrease in temperature results in 

steam saturation and tar condensation in the mixture. In this situation, fine particles are started 

to agglomerate and produce a paste-like mixture which clogged the downstream pipe and 

equipment as shown in Fig. 9. Heating tape is used to provide a maximum temperature of 300-

400°C to eliminate this effect. But due to the excess amount of steam in the product gas, the 

heating tape is not able to maintain sufficient heat at further distances along the pipe.  

3.3.2 Presence of moisture in gas analyzing system 

In the gas analyzing system, the product gas passes through the small condenser which 

separates the remaining moisture from the product gas stream. The efficiency of the condenser 

depends on the moisture present in the product gas. At high steam to biomass ratios, a high 

amount of unreacted steam exits from the gasifier and contributes a major part of the product 

gas stream. The product gas still carries a significant amount of moisture after passing through 

the cleaning system. Such high moisture level reduces the separation efficiency of the 

condenser. The moisture enters into the tubing system of the analyzers, as shown in Fig. 10 (a) 

and then passes through the sample flow meter as shown in Fig. 10 (b) associated with the gas 

analyzing system. This situation results in the accumulation of moisture in the gas analyzing 

system which causes inaccurate measurements and serious damage to the gas analysing system.  

3.3.3 Solutions to address operational problems   

To avoid clogging in downstream, nitrogen is injected into the system just before the biomass 

feeding into the system. Nitrogen flows consume heat from the reactor at high temperature i.e. 

600-750°C and then passed through, and heated up the pipe and equipment downstream. This 

enhanced the efficiency of the heating tape which is able to maintain high temperature 

operation between 300-400°C. This procedure is followed for all of the experiments to avoid 
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blockage within the system. The second problem is associated with moisture content is and its 

presence in the gas analyzing system which can cause false readings of the product gas 

composition measured by the GC. This effect is eliminated by nitrogen purging before the start 

of each experiment. N2 carried away any residual moisture and entrapped gases (H2, CO, CO2 

and CH4) present in the gas analyzing the system. N2 purging is also used for a couple of 

minutes during the experiments for removal of the moisture. During this operation, the 

connection to the main analyzer is opened and the moisture is drained before entering the gas 

analyzer.   

3.4 Performance of ICA gasification system 

A few parameters are selected to identify the performance of the ICA gasification system in 

the context of the present work. However, the detailed experimental results and their 

optimization can be found elsewhere 13, 14, 19. 

Table 5 shows the product gas composition, hydrogen yield and gas heating values at 600, 675 

and 750°C.  The results infer that the H2 composition (82.10 vol%) is maximum at 675°C while 

the CO2 composition is zero at 600 and 675°C. However, at 750°C, the H2 composition is 

drastically decreased to its minimum value (67.40 vol%) whereas CO2 increases to its 

maximum value (7.57 vol%). This increase clearly shows the existence of reverse carbonation 

(calcination reaction) in the system which has been reported by Xu et al. 15 and Pfeifer et al. 16 

at temperatures higher than 727°C and 675°C, respectively. Moreover, Zamboni et al. 17 and 

Aarlien et al.  18 reported maximum CO2 sorption temperature at 660°C and 700°C for enhanced 

H2 production, respectively. This infers the optimum temperature of 675°C is suitable for high 

H2 composition with minimal CO2 in ICA steam gasification and also provides evidence of a 

good fluidized bed operation in the present study. The lowest CH4 concentration at 750 °C is 

due to high reactive steam methane reforming in the presence of the Ni catalyst which is further 
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verified by the highest CO concentration observed at 750 °C. The high activity of Ni catalyst 

in steam methane reforming at a temperature >740°C is also reported by other researchers 50. 

It is concluded from the product gas profile of the ICA gasification system that the carbonation 

reaction remains effective at a lower temperature (600-675 °C, below the calcination 

temperature of CaCO3) with high H2 and negligible CO2 content; while with higher temperature 

(750 °C) the process is dominated by Ni-based catalysed steam methane reforming, and 

generated high CO and low CH4 concentrations. For this reason, the product gas profiles 

generated in ICA steam gasification might be different from biomass steam gasification with 

in-situ CO2 adsorbent 20 and biomass steam gasification using Ni catalyst 50, 51. Besides, H2 

yield increases with increasing temperature and maximum yield (150.99 g H2/kg biomass) is 

achieved at 750°C which is 5 times the yield at 600°C. The maximum H2 yield at higher 

temperature is mainly due to the endothermic reactions of catalytic steam methane reforming 

and tar cracking 52 in the process. A comparative study of the ICA gasification system ((150.99 

g H2/kg biomass at 750 °C) with catalytic sorption enhanced steam gasification (133 g H2/kg 

biomass at 700 °C in 0.5 g sample fixed bed reactor) 53 shows the prospects of the present work. 

The lower heating values of the product show a continuous decrease as the temperature 

increases. This trend can be explained by decreasing trend of CH4 with increasing temperature. 

Overall, the ICA steam gasification produces a gaseous mixture with medium heating values 

(12-18 MJ/Nm3). Besides, carbon conversion and gasification efficiency show an increasing 

trend as temperature increases. Low efficiencies at low temperature (600-675 °C) might be a 

case of negligible CO2 and low activity of endothermic reactions.  

The important aspect of the ICA steam gasification process is to maximize hydrogen generation 

in the product gas at lower gasification temperature. However, lower temperature in steam 

gasification might need to be observed closely due to high tar content nature of the process (as 



20 
 

shown in the Fig. 9). The proper heating of the downstream pipes and equipment needs to be 

maintained above tar condensation temperature up to the point of separation/collection.    

4. Conclusions  

The design considerations and pilot plant experiences of a bubbling fluidized bed gasification 

with integrated Ni catalyst and CO2 adsorbent for enhanced are presented. The gasifier 

operation showed minimal temperature variation (< 1%) below distributor plate, in the bed, 

and freeboard regions. Similarly, minimal pressure drop (<150 mbar) is observed which is 

found proportional to fluidization velocities in the bed. The negligible CO2 and high H2 

concentration (82 vol. %) in the product gas verify the active nature of the carbonation reaction 

even at a lower gasification temperature (600-675 °C, below the calcination temperature of 

CaCO3). Moreover, high H2 yield (31-150 g/kg biomass) and gas heating values (12.88-14.27 

MJ/Nm3) at a temperature range of 600-750°C shows the good operation of the system. In order 

to address the issue of clogginer, nitrogen is injected into the system just before the biomass 

feeding system since N2 flow may consume heat from the reactor at high temperature and could 

heat up the pipe and equipment downstream while passing through. For the solution of moisture 

accumulation, N2 is purged before the start of each experiment since N2 carried away any 

residual moisture and entrapped gases (H2, CO, CO2 and CH4) present in the gas analyzing the 

system. 
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Tables 

Table 1. Proximate and ultimate analysis of PKS24  

  

Moisture  (wt %) 9.61 

Proximate analysis (wt. % dry basis)  

Volatile matter  81.03 

Fixed carbon   14.87 

Ash content  4.10 

Ultimate analysis  (wt. % dry basis)  

C  49.65 

H  6.13 

N  0.41 

S  0.48 

O (by difference)  43.33 

Higher heating value  (MJ/kg) 20.40 
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Table 2. Physical properties and chemical composition of CaO (bed material)30 and steam35 36 

  Bed Material (CaO)   

Particle density  [kg/m3] 3053 

Bulk density   [kg/m3] 1047 

Chemical composition  (wt. %)  

CaO  93.32 

MgO  4.24 

SiO2  0.95 

Fe2O3  0.23 

Other metal oxides  
 
(MnO, CuO, SrO, ZnO) 
 
Steam (At 750 °C, 1 atm) 
 
Density (kg/m3) 
 
Viscosity (Pas) 

 
 
 
 
 

1.0 
 
 
 
 
 

0.22  
 

4×10-5
  



29 
 

Table 3. Input design parameter for distributor plate design  

Orifice diameter  (m) 0.002 

Minimum fluidization velocity  [m/s] 0.051 

Gas (steam) superficial velocity  [m/s] 0.26 

Bed voidage     - 0.66 

D/Z      - 1.0 

Rc       - 0.089 
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Table 4. Fluidized bed gasifier system configuration 

Internal diameter (ID)  [m] 0.15 

Total height [m] 2.00 

Freeboard height  [m] 0.30 

Freeboard ID  [m] 0.19 

Plenum height  [m] 0.30 

Distributor plate hole ID  [m] 0.002 

Feeding point location from the distributor 

(m) 

- 0.20 

Number of orifices in the distribution plate        - 158 

Operating temperature  [°C] 600-750 

Preheat temperature of the steam  [°C] 250-300 
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Table 5. Effect of temperature on performance parameters  

 

 

Temperature  [°C] 600 675 750 

Biomass feed rate  [kg/h] 1.35 1.35 1.35 

Steam/biomass  [wt/wt] 2.0 2.0 2.0 

Adsorbent to biomass  [wt/wt] 1.0 1.0 1.0 

Catalyst to biomass ratio  

Gas composition  (dry-N2 free) 

[wt/wt] 

[vol%] 

0.1 0.1 0.1 

H2 

CO 

CO2 

CH4 

 78.00 

8.78 

0.00 

13.22 

82.10 

6.45 

0.00 

11.43 

67.40 

14.33 

7.57 

10.70 

Hydrogen yield  [g/kg biomass] 31.80 80.39 150.99 

Lower heating value  [MJ/Nm3] 14.27 13.78 12.88 

Carbon conversion efficiency  [%] 11.06 20.06 87.01 


