272 research outputs found

    The Cloud Condensation Nuclei (CCN) properties of 2-methyltetrols and C3-C6 polyols from osmolality and surface tension measurements

    Get PDF
    A significant fraction of the organic material in aerosols is made of highly soluble compounds such as sugars (mono- and polysaccharides) and polyols such as the 2-methyltetrols, methylerythritol and methyltreitol. Because of their high solubility these compounds are considered as potentially efficient CCN material. For the 2-methyltetrols, this would have important implications for cloud formation at global scale because they are thought to be produced by the atmospheric oxidation of isoprene. To investigate this question, the complete Köhler curves for C3-C6 polyols and the 2-methyltetrols have been determined experimentally from osmolality and surface tension measurements. Contrary to what was expected, none of these compounds displayed a higher CCN efficiency than organic acids. Their Raoult terms show that this limited CCN efficiency is due to their absence of dissociation in water, this in spite of slight surface-tension effects for the 2-methyltetrols. Thus, compounds such as saccharides and polyols would not contribute more to cloud formation than other organic compounds studied so far. In particular, the presence of 2-methyltetrols in aerosols would not particularly enhance cloud formation in the atmosphere, in contrary to recently suggested

    Major 20th century changes of water-soluble humic-like substances (HULISWS) aerosol over Europe inferred from Alpine ice cores

    Get PDF
    Using a newly developed method dedicated to measurements of water-soluble humic-like substances (HULISWS) in atmospheric aerosol samples, the carbon mass quantification of HULISWS in an Alpine ice core is achieved for the first time. The method is based on the extraction of HULISWS with a weak anion-exchanger resin and the subsequent quantification of the extracted carbon fraction with a total organic carbon (TOC) analyzer. Measurements were performed along a Col du Dôme (4250m above sea level, French Alps) ice core covering the 1920-2004 time period. The HULISWS concentrations exhibit a well-marked seasonal cycle with winter minima close to 7 ppbC and summer maxima ranging between 10 and 50 ppbC. Whereas the winter HULISWS concentrations remained unchanged over the twentieth century, the summer concentrations increased from 20 ppbC prior to the Second World War to 35 ppbC in the 1970-1990s. These different trends reflect the different types of HULISWS sources in winter and summer. HULISWS are mainly primarily emitted by domestic wood burning in winter and secondary in summer being produced from biogenic precursors. For unknown reason, the HULISWS signal is found to be unusual in ice samples corresponding to World War II

    A possible role of ground-based microorganisms on cloud formation in the atmosphere

    Get PDF
    The formation of clouds is an important process for the atmosphere, the hydrological cycle, and climate, but some aspects of it are not completely understood. In this work, we show that microorganisms might affect cloud formation without leaving the Earth's surface by releasing biological surfactants (or biosurfactants) in the environment, that make their way into atmospheric aerosols and could significantly enhance their activation into cloud droplets. <br><br> In the first part of this work, the cloud-nucleating efficiency of standard biosurfactants was characterized and found to be better than that of any aerosol material studied so far, including inorganic salts. These results identify molecular structures that give organic compounds exceptional cloud-nucleating properties. In the second part, atmospheric aerosols were sampled at different locations: a temperate coastal site, a marine site, a temperate forest, and a tropical forest. Their surface tension was measured and found to be below 30 mN/m, the lowest reported for aerosols, to our knowledge. This very low surface tension was attributed to the presence of biosurfactants, the only natural substances able to reach to such low values. <br><br> The presence of strong microbial surfactants in aerosols would be consistent with the organic fractions of exceptional cloud-nucleating efficiency recently found in aerosols, and with the correlations between algae bloom and cloud cover reported in the Southern Ocean. The results of this work also suggest that biosurfactants might be common in aerosols and thus of global relevance. If this is confirmed, a new role for microorganisms on the atmosphere and climate could be identified

    Dynamical Instability of a Doubly Quantized Vortex in a Bose-Einstein condensate

    Full text link
    Doubly quantized vortices were topologically imprinted in F=1>|F=1> 23^{23}Na condensates, and their time evolution was observed using a tomographic imaging technique. The decay into two singly quantized vortices was characterized and attributed to dynamical instability. The time scale of the splitting process was found to be longer at higher atom density.Comment: 5 pages, 4 figure

    Effects of nuclear re-interactions in quasi-elastic neutrino-nucleus scattering

    Get PDF
    The effects of nuclear re-interactions in the quasi-elastic neutrino-nucleus scattering are investigated with a phenomenological model. We found that the nuclear responses are lowered and their maxima are shifted towards higher excitation energies. This is reflected on the total neutrino-nucleus cross section in a general reduction of about 15% for neutrino energies above 300 MeV.Comment: 15 pages, 5 figures. Submitted to AstroParticle Physic

    d_{x^2-y^2}-Wave Pairing Fluctuations and Pseudo Spin Gap in Two-Dimensional Electron Systems

    Full text link
    Pseudogap phenomena of high-T_c cuprates are examined. In terms of AFM (antiferromagnetic) and dSC (d_{x^2-y^2}-wave superconducting) auxiliary fields introduced to integrate out the fermions, the effective action for 2D electron systems with AFM and dSC fluctuations is considered. By the self-consistent renormalization (SCR), the NMR relaxation rate T_1^{-1}, the spin correlation length \xi_\sigma and the pairing correlation length \xi_d are calculated. From this calculation, a mechanism of the pseudogap formation emerges as the region of dominant d-wave short-range order (SRO) over AFM-SRO. When damping for the AFM fluctuation strongly depends on the dSC correlation length through the formation of precursor singlets around (\pi,0) and (0,\pi) points in the momentum space, the pseudogap appears in a region of the normal state characterized by decreasing 1/T_1T and increasing AFM correlation length with decrease in temperature. This reproduces a characteristic feature of the pseudogap phenomena in many underdoped cuprates. When the damping becomes insensitive to the dSC correlation length, the pseudogap region shrinks as in the overdoped cuprates.Comment: 13 pages with 5 figures, submitted to J. Phys. Soc. Jpn.; figure inclusion correcte
    corecore