94 research outputs found

    Mutations that alter the regulation of the chb operon of Escherichia coli allow utilization of cellobiose

    Get PDF
    Wild-type strains of Escherichia coli are normally unable to metabolize cellobiose. However, cellobiose-positive (Cel+) mutants arise upon prolonged incubation on media containing cellobiose as the sole carbon source. We show that the Cel+ derivatives carry two classes of mutations that act concertedly to alter the regulation of the chb operon involved in the utilization of N,N'-diacetylchitobiose. These consist of mutations that abrogate negative regulation by the repressor NagC as well as single base-pair changes in the transcriptional regulator chbR that translate into single-amino-acid substitutions. Introduction of chbR from two Cel+ mutants resulted in activation of transcription from the chb promoter at a higher level in the presence of cellobiose, in reporter strains carrying disruptions of the chromosomal chbR and nagC. These transformants also showed a Cel+ phenotype on MacConkey cellobiose medium, suggesting that the wild-type permease and phospho-β-glucosidase, upon induction, could recognize, transport and cleave cellobiose respectively. This was confirmed by expressing the wild-type genes encoding the permease and phospho-β-glucosidase under a heterologous promoter. Biochemical characterization of one of the chbR mutants, chbRN238S, showed that the mutant regulator makes stronger contact with the target DNA sequence within the chb promoter and has enhanced recognition of cellobiose 6-phosphate as an inducer compared with the wild-type regulator

    Serum malondialdehyde and serum glutathione peroxidase levels in pregnant women with and without preeclampsia

    Get PDF
    Background: Preeclampsia is a pregnancy-specific disorder that affects 10% of all pregnancies which contributes heavily to maternal mortality and perinatal morbidity. Several studies have shown that oxidative stress plays an important role in the pathogenesis of preeclampsia. However, the association has not been proven indisputably. So, the study was done with the view to determine serum malondialdehyde and glutathione peroxidase levels in pregnant women with and without preeclampsia and to compare the levels between the two groups of participants. Methods: This is a cross-sectional study conducted in the Department of Biochemistry and Department of Obstetrics and Gynaecology, RIMS. 55 preeclamptic patients and 55 pregnant women without preeclampsia were recruited as cases and controls respectively. Results: Serum malondialdehyde was found to be significantly higher in cases (1280.02±619.55ng/ml) than the controls (826.51±599.84ng/ml) and glutathione peroxidase levels were found to be significantly decreased in the preeclamptic women (224.49±201.29pg/ml) when compared to the normal healthy pregnant women (448±350.54 pg/ml. Serum malondialdehyde levels were found to be positively correlated with blood pressure. Conclusions: Serum malondialdehyde was increased in preeclampsia and serum glutathione levels was decreased in preeclamptic pregnant women when compared to the pregnant women without preeclampsia. Serum malondialdehyde levels were significantly correlated with high blood pressure. The oxidant-antioxidant system may be involved in the etiology of preeclampsia, however the cause and effect relation needs further evaluation

    Babies of South Asian and European Ancestry Show Similar Associations With Genetic Risk Score for Birth Weight Despite the Smaller Size of South Asian Newborns.

    Get PDF
    Size at birth is known to be influenced by various fetal and maternal factors, including genetic effects. South Asians have a high burden of low birth weight and cardiometabolic diseases, yet studies of common genetic variations underpinning these phenotypes are lacking. We generated independent, weighted fetal genetic scores (fGSs) and maternal genetic scores (mGSs) from 196 birth weight-associated variants identified in Europeans and conducted an association analysis with various fetal birth parameters and anthropometric and cardiometabolic traits measured at different follow-up stages (5-6-year intervals) from seven Indian and Bangladeshi cohorts of South Asian ancestry. The results from these cohorts were compared with South Asians in UK Biobank and the Exeter Family Study of Childhood Health, a European ancestry cohort. Birth weight increased by 50.7 g and 33.6 g per SD of fGS (P = 9.1 × 10-11) and mGS (P = 0.003), respectively, in South Asians. A relatively weaker mGS effect compared with Europeans indicates possible different intrauterine exposures between Europeans and South Asians. Birth weight was strongly associated with body size in both childhood and adolescence (P = 3 × 10-5 to 1.9 × 10-51); however, fGS was associated with body size in childhood only (P < 0.01) and with head circumference, fasting glucose, and triglycerides in adults (P < 0.01). The substantially smaller newborn size in South Asians with comparable fetal genetic effect to Europeans on birth weight suggests a significant role of factors related to fetal growth that were not captured by the present genetic scores. These factors may include different environmental exposures, maternal body size, health and nutritional status, etc. Persistent influence of genetic loci on size at birth and adult metabolic syndrome in our study supports a common genetic mechanism that partly explains associations between early development and later cardiometabolic health in various populations, despite marked differences in phenotypic and environmental factors in South Asians

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology.

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Формирование эмоциональной культуры как компонента инновационной культуры студентов

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P &lt; 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk

    Whole-genome sequencing in diverse subjects identifies genetic correlates of leukocyte traits: The NHLBI TOPMed program

    Get PDF
    Many common and rare variants associated with hematologic traits have been discovered through imputation on large-scale reference panels. However, the majority of genome-wide association studies (GWASs) have been conducted in Europeans, and determining causal variants has proved challenging. We performed a GWAS of total leukocyte, neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts generated from 109,563,748 variants in the autosomes and the X chromosome in the Trans-Omics for Precision Medicine (TOPMed) program, which included data from 61,802 individuals of diverse ancestry. We discovered and replicated 7 leukocyte trait associations, including (1) the association between a chromosome X, pseudo-autosomal region (PAR), noncoding variant located between cytokine receptor genes (CSF2RA and CLRF2) and lower eosinophil count; and (2) associations between single variants found predominantly among African Americans at the S1PR3 (9q22.1) and HBB (11p15.4) loci and monocyte and lymphocyte counts, respectively. We further provide evidence indicating that the newly discovered eosinophil-lowering chromosome X PAR variant might be associated with reduced susceptibility to common allergic diseases such as atopic dermatitis and asthma. Additionally, we found a burden of very rare FLT3 (13q12.2) variants associated with monocyte counts. Together, these results emphasize the utility of whole-genome sequencing in diverse samples in identifying associations missed by European-ancestry-driven GWASs
    corecore