126 research outputs found

    Muscarinic Modulation of Morphologically Identified Glycinergic Neurons in the Mouse PreBötzinger Complex

    Get PDF
    The cholinergic system plays an essential role in central respiratory control, but the underlying mechanisms remain elusive. We used whole-cell recordings in brainstem slices from juvenile mice expressing enhanced green fluorescent protein (EGFP) under the control of the glycine transporter type 2 (GlyT2) promoter, to examine muscarinic modulation of morphologically identified glycinergic neurons in the preBötzinger complex (preBötC), an area critical for central inspiratory rhythm generation. Biocytin-filled reconstruction of glycinergic neurons revealed that the majority of them had few primary dendrites and had axons arborized within their own dendritic field. Few glycinergic neurons had axon collaterals extended towards the premotor/motor areas or ran towards the contralateral preBötC, and had more primary dendrites and more compact dendritic trees. Spontaneously active glycinergic neurons fired regular spikes, or less frequently in a “burst-like” pattern at physiological potassium concentration. Muscarine suppressed firing in the majority of regular spiking neurons via M2 receptor activation while enhancing the remaining neurons through M1 receptors. Interestingly, rhythmic bursting was augmented by muscarine in a small group of glycinergic neurons. In contrast to its heterogeneous modulation of glycinergic neuronal excitability, muscarine generally depressed inhibitory and excitatory synaptic inputs onto both glycinergic and non-glycinergic preBötC neurons, with a stronger effect on inhibitory input. Notably, presynaptic muscarinic attenuation of excitatory synaptic input was dependent on M1 receptors in glycinergic neurons and on M2 receptors in non-glycinergic neurons. Additional field potential recordings of excitatory synaptic potentials in the M2 receptor knockout mice indicate that glycinergic and non-glycinergic neurons contribute equally to the general suppression by muscarine of excitatory activity in preBötC circuits. In conclusion, our data show that preBötC glycinergic neurons are morphologically heterogeneous, and differ in the properties of synaptic transmission and muscarinic modulation in comparison to non-glycinergic neurons. The dominant and cell-type-specific muscarinic inhibition of synaptic neurotransmission and spiking may contribute to central respiratory disturbances in high cholinergic states

    Excitatory Effects of Calcitonin Gene-Related Peptide (CGRP) on Superficial Sp5C Neurons in Mouse Medullary Slices

    Get PDF
    The neuromodulator calcitonin gene-related peptide (CGRP) is known to facilitate nociceptive transmission in the superficial laminae of the spinal trigeminal nucleus caudalis (Sp5C). The central effects of CGRP in the Sp5C are very likely to contribute to the activation of central nociceptive pathways leading to attacks of severe headaches like migraine. To examine the potential impacts of CGRP on laminae I/II neurons at cellular and synaptic levels, we performed whole-cell patch-clamp recordings in juvenile mouse brainstem slices. First, we tested the effect of CGRP on cell excitability, focusing on neurons with tonically firing action potentials upon depolarizing current injection. CGRP (100 nM) enhanced tonic discharges together with membrane depolarization, an excitatory effect that was significantly reduced when the fast synaptic transmissions were pharmacologically blocked. However, CGRP at 500 nM was capable of exciting the functionally isolated cells, in a nifedipine-sensitive manner, indicating its direct effect on membrane intrinsic properties. In voltage-clamped cells, 100 nM CGRP effectively increased the frequency of excitatory synaptic inputs, suggesting its preferential presynaptic effect. Both CGRP-induced changes in cell excitability and synaptic drives were prevented by the CGRP receptor inhibitor BIBN 4096BS. Our data provide evidence that CGRP increases neuronal activity in Sp5C superficial laminae by dose-dependently promoting excitatory synaptic drive and directly enhancing cell intrinsic properties. We propose that the combination of such pre- and postsynaptic actions of CGRP might underlie its facilitation in nociceptive transmission in situations like migraine with elevated CGRP levels

    Distribution and Abundance of Glucocorticoid and Mineralocorticoid Receptors throughout the Brain of the Great Tit (Parus major)

    Get PDF
    The glucocorticoid stress response, regulated by the hypothalamic-pituitary-adrenal (HPA) axis, enables individuals to cope with stressors through transcriptional effects in cells expressing the appropriate receptors. The two receptors that bind glucocorticoids-the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR)-are present in a variety of vertebrate tissues, but their expression in the brain is especially important. Neural receptor patterns have the potential to integrate multiple behavioral and physiological traits simultaneously, including self-regulation of glucocorticoid secretion through negative feedback processes. In the present work, we quantified the expression of GR and MR mRNA throughout the brain of a female great tit (Parus major), creating a distribution map encompassing 48 regions. This map, the first of its kind for P. major, demonstrated a widespread but not ubiquitous distribution of both receptor types. In the paraventricular nucleus of the hypothalamus (PVN) and the hippocampus (HP)-the two brain regions that we sampled from a total of 25 birds, we found high GR mRNA expression in the former and, unexpectedly, low MR mRNA in the latter. We examined the covariation of MR and GR levels in these two regions and found a strong, positive relationship between MR in the PVN and MR in the HP and a similar trend for GR across these two regions. This correlation supports the idea that hormone pleiotropy may constrain an individual's behavioral and physiological phenotype. In the female song system, we found moderate GR in hyperstriatum ventrale, pars caudalis (HVC), and moderate MR in robust nucleus of the arcopallium (RA). Understanding intra- and interspecific patterns of glucocorticoid receptor expression can inform us about the behavioral processes (e.g. song learning) that may be sensitive to stress and stimulate future hypotheses concerning the relationships between receptor expression, circulating hormone concentrations and performance traits under selection, including behavior

    Strukturelle Korrelate des Gesangslernens bei Vögeln

    Get PDF
    Das Gesangssystem der Vögel hat sich als ein hervorragendes Modellsystem erwiesen, um Fragen zu Mechanismen entwicklungsbedingter neuronaler Plastizität von Lernprozessen zu erarbeiten. Bei Singvögeln haben sich im Laufe der Phylogenese neuronale Zentren entwickelt, die sich auf das Gesangslernen und die Gesangsproduktion spezialisiert haben. Zebrafinkenmännchen, wie viele andere Singvögel auch, erlernen ihren Gesang, indem sie von einem Tutor ihr artspezifisches Gesangsmuster schon in früher Jugend im Gedächtnis abspeichern und dann ganz allmählich ihr eigenes Vokalisationsmuster über auditorische Rückkopplung an das im Gehirn abgespeicherte Muster angleichen. Parallel zu diesen Verhaltensänderungen, finden auch auf neuronaler Ebene zahlreiche Veränderungen in den Gesangskernen statt, die in der hier vorliegenden Arbeit detailliert untersucht wurden, indem Zebrafinken zum einen mit einem Gesangstutor aufwuchsen oder ohne ein Gesangsvorbild. Die Folgen dieser unterschiedlichen Aufzuchtsbedingungen wurden dann im Gesang und in den neuronalen Strukturen der Gesangskerne mit einer Vielzahl von Techniken analysiert, einschließlich der Golgi-Technik, Elektronenmikroskopie, Immunhistochemie, verschiedener neuronaler Tracersubstanzen und quantitativer Stereologie, sowie intrazellulärer Ableitungen am in vitro Hirnschnittpräparat. Die Daten zeigen u.a., dass dendritische Spines an der Gedächtnisbildung für Gesang maßgeblich beteiligt sind und zwar in einer Vorderhirnregion, der eine wichtige Rolle bei frühen sensorischen Lernprozessen zukommt, dem lateralen magnocellularen Nucleus des anterioren Nidopalliums (LMAN). Zebrafinkenweibchen singen nicht und haben weitaus kleinere Gesangskerne als die Männchen. Zebrafinkenweibchen, die nie einen artspezifischen Gesang hören, weisen im Vergleich zu denen, die mit einem solchen aufgewachsen sind, signifikante Unterschiede in der neuronalen Struktur im Nucleus robustus arcopallii (RA) auf. Diese Befunde zeigen, dass die Gesangskerne bei Weibchen trotz ihrer kleineren Größe dennoch eine wichtige Rolle bei der Gedächtnisbildung eines artspezifischen Gesangsmusters spielen. Man beachte, dass die Nomenklatur des Vogelgehirns 2004 revidiert wurde (Reiner et al, J Comp Neurol 473:377-414, 2004; http://avianbrain.org/papers/RevisedNomenclature.pdf).The song system of birds has been used extensively as a model system for studying basic mechanisms of neuronal plasticity and development underlying a learned behavior. Discrete sets of interconnected nuclei in the avian brain have evolved and are a prerequisite for song learning processes and the production of song. Zebra finch males, like many other song birds, learn their song by memorizing a tutor song model early in life and then gradually matching their vocal output by auditory feedback to the stored memory of that tutor song. In parallel to these behavioural changes, various changes in neuronal structures of song system nuclei take place. These structural correlates of song learning processes have been investigated in great detail in the current research by raising zebra finches with and without a song tutor model and then studying the consequences for song and for neuronal structure in the song system by using a variety of techniques including Golgi-technique, electron microscopy, immunohistochemistry, various neuronal tracer and quantitative stereology, intracellular recordings in the in vitro slice preparation and analyzing sonograms at the behavioral approach. There is strong evidence that, among other findings, dendritic spines are very much involved in memory formation of song in the lateral magnocellular nucleus of the anterior nidopallium (LMAN), a forebrain region particularly involved in sensory learning processes early in life. Female zebra finches do not sing and have much smaller song nuclei than males. Rearing females either with being exposed to species-specific song early in life or deprived of hearing song, exhibit significant differences in neuronal structure particularly in nucleus robustus arcopallii (RA). These data give further evidence that, despite their smaller sizes, song system nuclei in female birds do play an important role in memorization of song. Please note that in 2004 the nomenclature of the avian brain has been revised (Reiner et al, J Comp Neurol 473:377-414, 2004; http://avianbrain.org/papers/RevisedNomenclature.pdf)
    corecore