570 research outputs found

    A non-Gaussian landscape

    Get PDF
    Primordial perturbations with wavelengths greater than the observable universe shift the effective background fields in our observable patch from their global averages over the inflating space. This leads to a landscape picture where the properties of our observable patch depend on its location and may significantly differ from the expectation values predicted by the underlying fundamental inflationary model. We show that if multiple fields are present during inflation, this may happen even if our horizon exit would be preceded by only a few e-foldings of inflation. Non-Gaussian statistics are especially affected: for example models of local non-Gaussianity predicting |f_NL|>> 10 over the entire inflating volume can have a probability up to a few tens of percent to generate a non-detectable bispectrum in our observable patch |fNL^{obs.}|<10. In this work we establish systematic connections between the observable local properties of primordial perturbations and the global properties of the inflating space which reflect the underlying high energy physics. We study in detail the implications of both a detection and non-detection of primordial non-Gaussianity by Planck, and discover novel ways of characterising the naturalness of different observational configurations

    Fractal Theory Space: Spacetime of Noninteger Dimensionality

    Get PDF
    We construct matter field theories in ``theory space'' that are fractal, and invariant under geometrical renormalization group (RG) transformations. We treat in detail complex scalars, and discuss issues related to fermions, chirality, and Yang-Mills gauge fields. In the continuum limit these models describe physics in a noninteger spatial dimension which appears above a RG invariant ``compactification scale,'' M. The energy distribution of KK modes above M is controlled by an exponent in a scaling relation of the vacuum energy (Coleman-Weinberg potential), and corresponds to the dimensionality. For truncated-s-simplex lattices with coordination number s the spacetime dimensionality is 1+(3+2ln(s)/ln(s+2)). The computations in theory space involve subtleties, owing to the 1+3 kinetic terms, yet the resulting dimensionalites are equivalent to thermal spin systems. Physical implications are discussed.Comment: 28 pages, 6 figures; Paper has been amplified with a more detailed discussion of a number of technical issue

    Solid State Systems for Electron Electric Dipole Moment and other Fundamental Measurements

    Full text link
    In 1968, F.L. Shapiro published the suggestion that one could search for an electron EDM by applying a strong electric field to a substance that has an unpaired electron spin; at low temperature, the EDM interaction would lead to a net sample magnetization that can be detected with a SQUID magnetometer. One experimental EDM search based on this technique was published, and for a number of reasons including high sample conductivity, high operating temperature, and limited SQUID technology, the result was not particularly sensitive compared to other experiments in the late 1970's. Advances in SQUID and conventional magnetometery had led us to reconsider this type of experiment, which can be extended to searches and tests other than EDMs (e.g., test of Lorentz invariance). In addition, the complementary measurement of an EDM-induced sample electric polarization due to application of a magnetic field to a paramagnetic sample might be effective using modern ultrasensitive charge measurement techniques. A possible paramagnetic material is Gd-substituted YIG which has very low conductivity and a net enhancement (atomic enhancement times crystal screening) of order unity. Use of a reasonable volume (100's of cc) sample of this material at 50 mK and 10 kV/cm might yield an electron EDM sensitivity of 103310^{-33} e cm or better, a factor of 10610^6 improvement over current experimental limits.Comment: 6 pages. Prepared for ITAMP workshop on fundamental physics that was to be held Sept 20-22 2001 in Cambride, MA, but was canceled due to terrorist attack on U.S New version incorporates a number of small changes, most notably the scaling of the sensitivity of the Faraday magnetometer with linewidth is now treated in a saner fashion. The possibility of operating at an even lower temperarture, say 10 microkelvin, is also discusse

    Supersymmetric effects in top quark decay into polarized W-boson

    Full text link
    We investigate the one-loop supersymmetric QCD (SUSY-QCD) and electroweak (SUSY-EW) corrections to the top quark decay into a b-quark and a longitudinal or transverse W-boson. The corrections are presented in terms of the longitudinal ratio \Gamma(t-->W_L b)/\Gamma(t--> W b) and the transverse ratio \Gamma(t-->W_- b)/\Gamma(t--> W b). In most of the parameter space, both SUSY-QCD and SUSY-EW corrections to these ratios are found to be less than 1% in magnitude and they tend to have opposite signs. The corrections to the total width \Gamma(t-->W b) are also presented for comparison with the existing results in the literature. We find that our SUSY-EW corrections to the total width differ significantly from previous studies: the previous studies give a large correction of more than 10% in magnitude for a large part of the parameter space while our results reach only few percent at most.Comment: Version in PRD (explanation and refs added

    Langevin Simulations of Two Dimensional Vortex Fluctuations: Anomalous Dynamics and a New IVIV-exponent

    Full text link
    The dynamics of two dimensional (2D) vortex fluctuations are investigated through simulations of the 2D Coulomb gas model in which vortices are represented by soft disks with logarithmic interactions. The simulations trongly support a recent suggestion that 2D vortex fluctuations obey an intrinsic anomalous dynamics manifested in a long range 1/t-tail in the vortex correlations. A new non-linear IV-exponent a, which is different from the commonly used AHNS exponent, a_AHNS and is given by a = 2a_AHNS - 3, is confirmed by the simulations. The results are discussed in the context of earlier simulations, experiments and a phenomenological description.Comment: Submitted to PRB, RevTeX format, 28 pages and 13 figures, figures in postscript format are available at http://www.tp.umu.se/~holmlund/papers.htm

    Proteomic and transcriptomic changes in hibernating grizzly bears reveal metabolic and signaling pathways that protect against muscle atrophy

    Get PDF
    Muscle atrophy is a physiological response to disuse and malnutrition, but hibernating bears are largely resistant to this phenomenon. Unlike other mammals, they efficiently reabsorb amino acids from urine, periodically activate muscle contraction, and their adipocytes differentially responds to insulin. The contribution of myocytes to the reduced atrophy remains largely unknown. Here we show how metabolism and atrophy signaling are regulated in skeletal muscle of hibernating grizzly bear. Metabolic modeling of proteomic changes suggests an autonomous increase of non-essential amino acids (NEAA) in muscle and treatment of differentiated myoblasts with NEAA is sufficient to induce hypertrophy. Our comparison of gene expression in hibernation versus muscle atrophy identified several genes differentially regulated during hibernation, including Pdk4 and Serpinf1. Their trophic effects extend to myoblasts from non-hibernating species (including C. elegans), as documented by a knockdown approach. Together, these changes reflect evolutionary favored adaptations that, once translated to the clinics, could help improve atrophy treatment

    Vortex dynamics for two-dimensional XY models

    Full text link
    Two-dimensional XY models with resistively shunted junction (RSJ) dynamics and time dependent Ginzburg-Landau (TDGL) dynamics are simulated and it is verified that the vortex response is well described by the Minnhagen phenomenology for both types of dynamics. Evidence is presented supporting that the dynamical critical exponent zz in the low-temperature phase is given by the scaling prediction (expressed in terms of the Coulomb gas temperature TCGT^{CG} and the vortex renormalization given by the dielectric constant ϵ~\tilde\epsilon) z=1/ϵ~TCG22z=1/\tilde{\epsilon}T^{CG}-2\geq 2 both for RSJ and TDGL and that the nonlinear IV exponent a is given by a=z+1 in the low-temperature phase. The results are discussed and compared with the results of other recent papers and the importance of the boundary conditions is emphasized.Comment: 21 pages including 15 figures, final versio

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore