79 research outputs found

    New coins from old, smoothly

    Get PDF
    Given a (known) function f:[0,1](0,1)f:[0,1] \to (0,1), we consider the problem of simulating a coin with probability of heads f(p)f(p) by tossing a coin with unknown heads probability pp, as well as a fair coin, NN times each, where NN may be random. The work of Keane and O'Brien (1994) implies that such a simulation scheme with the probability p(N<)\P_p(N<\infty) equal to 1 exists iff ff is continuous. Nacu and Peres (2005) proved that ff is real analytic in an open set S(0,1)S \subset (0,1) iff such a simulation scheme exists with the probability p(N>n)\P_p(N>n) decaying exponentially in nn for every pSp \in S. We prove that for α>0\alpha>0 non-integer, ff is in the space Cα[0,1]C^\alpha [0,1] if and only if a simulation scheme as above exists with p(N>n)C(Δn(p))α\P_p(N>n) \le C (\Delta_n(p))^\alpha, where \Delta_n(x)\eqbd \max \{\sqrt{x(1-x)/n},1/n \}. The key to the proof is a new result in approximation theory: Let \B_n be the cone of univariate polynomials with nonnegative Bernstein coefficients of degree nn. We show that a function f:[0,1](0,1)f:[0,1] \to (0,1) is in Cα[0,1]C^\alpha [0,1] if and only if ff has a series representation n=1Fn\sum_{n=1}^\infty F_n with F_n \in \B_n and k>nFk(x)C(Δn(x))α\sum_{k>n} F_k(x) \le C(\Delta_n(x))^\alpha for all x[0,1] x \in [0,1] and n1n \ge 1. We also provide a counterexample to a theorem stated without proof by Lorentz (1963), who claimed that if some \phi_n \in \B_n satisfy f(x)ϕn(x)C(Δn(x))α|f(x)-\phi_n(x)| \le C (\Delta_n(x))^\alpha for all x[0,1] x \in [0,1] and n1n \ge 1, then fCα[0,1]f \in C^\alpha [0,1].Comment: 29 pages; final version; to appear in Constructive Approximatio

    A Weighted Estimate for the Square Function on the Unit Ball in \C^n

    Full text link
    We show that the Lusin area integral or the square function on the unit ball of \C^n, regarded as an operator in weighted space L2(w)L^2(w) has a linear bound in terms of the invariant A2A_2 characteristic of the weight. We show a dimension-free estimate for the ``area-integral'' associated to the weighted L2(w)L^2(w) norm of the square function. We prove the equivalence of the classical and the invariant A2A_2 classes.Comment: 11 pages, to appear in Arkiv for Matemati

    Magnetoconductance Oscillations in Ballistic Semiconductor-Superconductor Junctions

    Full text link
    The mechanism of the magnetoconductance oscillations in junctions of a ballistic semiconductor and a superconductor is discussed. The oscillations appear when both the normal and the Andreev reflection occur at the interface. The interplay between the classical cyclotron motion of a quasiparticle and the phase shift caused by the magnetic field is the origin of the conductance oscillations.Comment: 4 pages, 4 figure

    Shot noise of spin polarized electrons

    Full text link
    The shot noise of spin polarized electrons is shown to be generically dependent upon spin-flip processes. Such a situation represents perhaps the simplest instance where the two-particle character of current fluctuations out of equilibrium is explicit, leading to trinomial statistics of charge transfer in a single channel model. We calculate the effect of spin-orbit coupling, magnetic impurities, and precession in an external magnetic field on the noise in the experimentally relevant cases of diffusive wires and lateral semiconductor dots, finding dramatic enhancements of the Fano factor. The possibility of using the shot noise to measure the spin-relaxation time in an open mesoscopic system is raised.Comment: Published version. Minor clarifications and correction

    A Diagrammatic Theory of Random Scattering Matrices for Normal-Superconducting Mesoscopic Junctions

    Full text link
    The planar-diagrammatic technique of large-NN random matrices is extended to evaluate averages over the circular ensemble of unitary matrices. It is then applied to study transport through a disordered metallic ``grain'', attached through ideal leads to a normal electrode and to a superconducting electrode. The latter enforces boundary conditions which coherently couple electrons and holes at the Fermi energy through Andreev scattering. Consequently, the {\it leading order} of the conductance is altered, and thus changes much larger than e2/he^2/h are observed when, e.g., a weak magnetic field is applied. This is in agreement with existing theories. The approach developed here is intermediate between the theory of dirty superconductors (the Usadel equations) and the random-matrix approach involving transmission eigenvalues (e.g. the DMPK equation) in the following sense: even though one starts from a scattering formalism, a quantity analogous to the superconducting order-parameter within the system naturally arises. The method can be applied to a variety of mesoscopic normal-superconducting structures, but for brevity we consider here only the case of a simple disordered N-S junction.Comment: 39 pages + 9 postscript figure

    Electron transport through interacting quantum dots

    Full text link
    We present a detailed theoretical investigation of the effect of Coulomb interactions on electron transport through quantum dots and double barrier structures connected to a voltage source via an arbitrary linear impedance. Combining real time path integral techniques with the scattering matrix approach we derive the effective action and evaluate the current-voltage characteristics of quantum dots at sufficiently large conductances. Our analysis reveals a reach variety of different regimes which we specify in details for the case of chaotic quantum dots. At sufficiently low energies the interaction correction to the current depends logarithmically on temperature and voltage. We identify two different logarithmic regimes with the crossover between them occurring at energies of order of the inverse dwell time of electrons in the dot. We also analyze the frequency-dependent shot noise in chaotic quantum dots and elucidate its direct relation to interaction effects in mesoscopic electron transport.Comment: 21 pages, 4 figures. References added, discussion slightly extende

    Modification of electroluminescence and charge trapping in germanium implanted metal-oxide-silicon light-emitting diodes with plasma treatment

    No full text
    We have studied the effect of plasma treatment on both the electroluminescent (EL) properties of Ge-implanted light-emitting metal-oxide silicon (MOS) devices and the charge trapping processes occurring therein. Under optimum conditions of plasma treatment, an appreciable increase in the device lifetime has been observed while maintaining the intensity of the light emission unchanged in the violet range of the spectrum. These phenomena are believed to be associated with recovery of the oxide network resulting from a relief of internal mechanical stresses and bond rearrangement that leads to a decrease in the generation efficiency of electron traps which are responsible for the device degradation

    Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV

    Get PDF
    The elliptic, v2v_2, triangular, v3v_3, and quadrangular, v4v_4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range η<0.8|\eta|<0.8 at different collision centralities and as a function of transverse momentum, pTp_{\rm T}, out to pT=20p_{\rm T}=20 GeV/cc. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for pT>8p_{\rm T}>8 GeV/cc. The small pTp_{\rm T} dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to pT=8p_{\rm T}=8 GeV/cc. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least pT=8p_{\rm T}=8 GeV/cc indicating that the particle type dependence persists out to high pTp_{\rm T}.Comment: 16 pages, 5 captioned figures, authors from page 11, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186

    Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}} = 2.76 TeV

    Get PDF
    The inclusive transverse momentum (pTp_{\rm T}) distributions of primary charged particles are measured in the pseudo-rapidity range η<0.8|\eta|<0.8 as a function of event centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}}=2.76 TeV with ALICE at the LHC. The data are presented in the pTp_{\rm T} range 0.15<pT<500.15<p_{\rm T}<50 GeV/cc for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor RAAR_{\rm{AA}} using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-pTp_{\rm T} particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with RAA0.13R_{\rm{AA}}\approx0.13 at pT=6p_{\rm T}=6-7 GeV/cc. Above pT=7p_{\rm T}=7 GeV/cc, there is a significant rise in the nuclear modification factor, which reaches RAA0.4R_{\rm{AA}} \approx0.4 for pT>30p_{\rm T}>30 GeV/cc. In peripheral collisions (70-80%), the suppression is weaker with RAA0.7R_{\rm{AA}} \approx 0.7 almost independently of pTp_{\rm T}. The measured nuclear modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/284

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98
    corecore