10 research outputs found

    Search for pair-produced resonances decaying to quark pairs in proton-proton collisions at root s=13 TeV

    Get PDF
    A general search for the pair production of resonances, each decaying to two quarks, is reported. The search is conducted separately for heavier resonances (masses above 400 GeV), where each of the four final-state quarks generates a hadronic jet resulting in a four-jet signature, and for lighter resonances (masses between 80 and 400 GeV), where the pair of quarks from each resonance is collimated and reconstructed as a single jet resulting in a two-jet signature. In addition, a b-tagged selection is applied to target resonances with a bottom quark in the final state. The analysis uses data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 35.9 fb(-1), from proton-proton collisions at a center-of-mass energy of 13 TeV. The mass spectra are analyzed for the presence of new resonances, and are found to be consistent with standard model expectations. The results are interpreted in the framework of R-parity-violating supersymmetry assuming the pair production of scalar top quarks decaying via the hadronic coupling lambda ''(312) or lambda ''(323) and upper limits on the cross section as a function of the top squark mass are set. These results probe a wider range of masses than previously explored at the LHC, and extend the top squark mass limits in the (t) over tilde -> qq' scenario.Peer reviewe

    Measurement of the cross section for tt \mathrm{t}\overline{\mathrm{t}} production with additional jets and b jets in pp collisions at s \sqrt{s} = 13 TeV

    No full text
    Measurements of the cross section for the production of top quark pairs in association with a pair of jets from bottom quarks (σttbb) \left({\sigma}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{b}\overline{\mathrm{b}}}\right) and in association with a pair of jets from quarks of any flavor or gluons (σttjj) \left({\sigma}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{jj}}\right) and their ratio are presented. The data were collected in proton-proton collisions at a center-of-mass energy of 13 TeV by the CMS experiment at the LHC in 2016 and correspond to an integrated luminosity of 35.9 fb−1. The measurements are performed in a fiducial phase space and extrapolated to the full phase space, separately for the dilepton and lepton+jets channels, where lepton corresponds to either an electron or a muon. The results of the measurements in the fiducial phase space for the dilepton and lepton+jets channels, respectively, are σttjj {\sigma}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{jj}} = 2.36±0.02 (stat)±0.20 (syst) pb and 31.0±0.2 (stat)±2.9 (syst) pb, and for the cross section ratio 0.017 ± 0.001 (stat) ± 0.001 (syst) and 0.020 ± 0.001 (stat) ± 0.001 (syst). The values of σttbb {\sigma}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{b}\overline{\mathrm{b}}} are determined from the product of the σttjj {\sigma}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{jj}} and the cross section ratio, obtaining, respectively, 0.040±0.002 (stat)±0.005 (syst) pb and 0.62±0.03 (stat)±0.07 (syst) pb. These measurements are the most precise to date and are consistent, within the uncertainties, with the standard model expectations obtained using a matrix element calculation at next-to-leading order in quantum chromodynamics matched to a parton shower

    Search for a heavy vector resonance decaying to a Z boson and a Higgs boson in proton-proton collisions at s=13TeV

    No full text
    : A search is presented for a heavy vector resonance decaying into a Z boson and the standard model Higgs boson, where the Z boson is identified through its leptonic decays to electrons, muons, or neutrinos, and the Higgs boson is identified through its hadronic decays. The search is performed in a Lorentz-boosted regime and is based on data collected from 2016 to 2018 at the CERN LHC, corresponding to an integrated luminosity of 137 fb-1 . Upper limits are derived on the production of a narrow heavy resonance Z' , and a mass below 3.5 and 3.7 Te is excluded at 95% confidence level in models where the heavy vector boson couples predominantly to fermions and to bosons, respectively. These are the most stringent limits placed on the Heavy Vector Triplet Z' model to date. If the heavy vector boson couples exclusively to standard model bosons, upper limits on the product of the cross section and branching fraction are set between 23 and 0.3 fb for a Z' mass between 0.8 and 4.6 Te , respectively. This is the first limit set on a heavy vector boson coupling exclusively to standard model bosons in its production and decay

    A search for the standard model Higgs boson decaying to charm quarks

    No full text
    A direct search for the standard model Higgs boson, H, produced in association with a vector boson, V (W or Z), and decaying to a charm quark pair is presented. The search uses a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb−1, collected by the CMS experiment at the LHC in 2016, at a centre-of-mass energy of 13 TeV. The search is carried out in mutually exclusive channels targeting specific decays of the vector bosons: W → lν, Z → ll, and Z → νν, where l is an electron or a muon. To fully exploit the topology of the H boson decay, two strategies are followed. In the first one, targeting lower vector boson transverse momentum, the H boson candidate is reconstructed via two resolved jets arising from the two charm quarks from the H boson decay. A second strategy identifies the case where the two charm quark jets from the H boson decay merge to form a single jet, which generally only occurs when the vector boson has higher transverse momentum. Both strategies make use of novel methods for charm jet identification, while jet substructure techniques are also exploited to suppress the background in the merged-jet topology. The two analyses are combined to yield a 95% confidence level observed (expected) upper limit on the cross section σ(VH)B(Hcc) \sigma \left(\mathrm{VH}\right)\mathrm{\mathcal{B}}\left(\mathrm{H}\to \mathrm{c}\overline{\mathrm{c}}\right) of 4.5 (2.40.7+1.0) \left({2.4}_{-0.7}^{+1.0}\right) pb, corresponding to 70 (37) times the standard model prediction

    Search for an excited lepton that decays via a contact interaction to a lepton and two jets in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    Results are presented from a search for events containing an excited lepton (electron or muon) produced in association with an ordinary lepton of the same flavor and decaying to a lepton and two hadronic jets. Both the production and the decay of the excited leptons are assumed to occur via a contact interaction with a characteristic energy scale Λ. The branching fraction for the decay mode under study increases with the mass of the excited lepton and is the most sensitive channel for very heavy excited leptons. The analysis uses a sample of proton-proton collisions collected by the CMS experiment at the LHC at s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 77.4 fb−1. The four-body invariant mass of the two lepton plus two jet system is used as the primary discriminating variable. No significant excess of events beyond the expectation for standard model processes is observed. Assuming that Λ is equal to the mass of the excited leptons, excited electrons and muons with masses below 5.6 and 5.7 TeV, respectively, are excluded at 95% confidence level. These are the best limits to date

    Running of the top quark mass from proton-proton collisions at s=13TeV

    No full text
    The running of the top quark mass is experimentally investigated for the first time. The mass of the top quark in the modified minimal subtraction (MS ̅) renormalization scheme is extracted from a comparison of the differential top quark-antiquark (tt ̄) cross section as a function of the invariant mass of the tt ̄ system to next-to-leading-order theoretical predictions. The differential cross section is determined at the parton level by means of a maximum-likelihood fit to distributions of final-state observables. The analysis is performed using tt ̄ candidate events in the e± μ∓ channel in proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the CMS detector at the CERN LHC in 2016, corresponding to an integrated luminosity of 35.9fb−1. The extracted running is found to be compatible with the scale dependence predicted by the corresponding renormalization group equation. In this analysis, the running is probed up to a scale of the order of 1 TeV

    Constraints on the {\ensuremath{\chi}}_{c1} versus {\ensuremath{\chi}}_{c2} Polarizations in Proton-Proton Collisions at s=8  TeV\sqrt{s}=8\text{ }\text{ }\mathrm{TeV}

    No full text

    Search for Supersymmetry with a Compressed Mass Spectrum in Events with a Soft \ensuremath{\tau} Lepton, a Highly Energetic Jet, and Large Missing Transverse Momentum in Proton-Proton Collisions at s=13  TeV\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}

    No full text

    Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at s=13  TeV\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}

    No full text

    Study of central exclusive production in proton-proton collisions at s=5.02\sqrt{s} = 5.02 and 13TeV

    No full text
    Central exclusive and semiexclusive production of pairs is measured with the CMS detector in proton-proton collisions at the LHC at center-of-mass energies of 5.02 and 13TeV. The theoretical description of these nonperturbative processes, which have not yet been measured in detail at the LHC, poses a significant challenge to models. The two pions are measured and identified in the CMS silicon tracker based on specific energy loss, whereas the absence of other particles is ensured by calorimeter information. The total and differential cross sections of exclusive and semiexclusive central production are measured as functions of invariant mass, transverse momentum, and rapidity of the system in the fiducial region defined as transverse momentum and pseudorapidity . The production cross sections for the four resonant channels , , , and are extracted using a simple model. These results represent the first measurement of this process at the LHC collision energies of 5.02 and 13TeV
    corecore