17 research outputs found

    Discovery of Novel MicroRNAs in Female Reproductive Tract Using Next Generation Sequencing

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs that mediate post-transcriptional gene silencing. Over 700 human miRNAs have currently been identified, many of which are mutated or de-regulated in diseases. Here we report the identification of novel miRNAs through deep sequencing the small RNAome (<30 nt) of over 100 tissues or cell lines derived from human female reproductive organs in both normal and disease states. These specimens include ovarian epithelium and ovarian cancer, endometrium and endometriomas, and uterine myometrium and uterine smooth muscle tumors. Sequence reads not aligning with known miRNAs were each mapped to the genome to extract flanking sequences. These extended sequence regions were folded in silico to identify RNA hairpins. Sequences demonstrating the ability to form a stem loop structure with low minimum free energy (<−25 kcal) and predicted Drosha and Dicer cut sites yielding a mature miRNA sequence matching the actual sequence were considered putative novel miRNAs. Additional confidence was achieved when putative novel hairpins assembled a collection of sequences highly similar to the putative mature miRNA but with heterogeneous 3′-ends. A confirmed novel miRNA fulfilled these criteria and had its “star” sequence in our collection. We found 7 distinct confirmed novel miRNAs, and 51 additional novel miRNAs that represented highly confident predictions but without detectable star sequences. Our novel miRNAs were detectable in multiple samples, but expressed at low levels and not specific to any one tissue or cell type. To date, this study represents the largest set of samples analyzed together to identify novel miRNAs

    Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition

    Get PDF
    Selective targeting of aneuploid cells is an attractive strategy for cancer treatment(1). Here, we mapped the aneuploidy landscapes of ~1,000 human cancer cell lines, and analyzed genetic and chemical perturbation screens(2–9) to reveal aneuploidy-associated cellular vulnerabilities. We identified and validated an increased sensitivity of aneuploid cancer cells to genetic perturbation of core components of the spindle assembly checkpoint (SAC), which ensures the proper segregation of chromosomes during mitosis(10). Surprisingly, we also found aneuploid cancer cells to be less sensitive to short-term exposures to multiple SAC inhibitors. Indeed, aneuploid cancer cells became increasingly more sensitive to SAC inhibition (SACi) over time. Aneuploid cells exhibited aberrant spindle geometry and dynamics, and kept dividing in the presence of SACi, resulting in accumulating mitotic defects, and in unstable and less fit karyotypes. Therefore, although aneuploid cancer cells could overcome SACi more readily than diploid cells, their long-term proliferation was jeopardized. We identified a specific mitotic kinesin, KIF18A, whose activity was perturbed in aneuploid cancer cells. Aneuploid cancer cells were particularly vulnerable to KIF18A depletion, and KIF18A overexpression restored their response to SACi. Our study reveals a novel, therapeutically-relevant, synthetic lethal interaction between aneuploidy and the SAC

    Transforming Growth Factor β Receptor Type 1 Is Essential for Female Reproductive Tract Integrity and Function

    Get PDF
    The transforming growth factor β (TGFβ) superfamily proteins are principle regulators of numerous biological functions. Although recent studies have gained tremendous insights into this growth factor family in female reproduction, the functions of the receptors in vivo remain poorly defined. TGFβ type 1 receptor (TGFBR1), also known as activin receptor-like kinase 5, is the major type 1 receptor for TGFβ ligands. Tgfbr1 null mice die embryonically, precluding functional characterization of TGFBR1 postnatally. To study TGFBR1–mediated signaling in female reproduction, we generated a mouse model with conditional knockout (cKO) of Tgfbr1 in the female reproductive tract using anti-Müllerian hormone receptor type 2 promoter-driven Cre recombinase. We found that Tgfbr1 cKO females are sterile. However, unlike its role in growth differentiation factor 9 (GDF9) signaling in vitro, TGFBR1 seems to be dispensable for GDF9 signaling in vivo. Strikingly, we discovered that the Tgfbr1 cKO females develop oviductal diverticula, which impair embryo development and transit of embryos to the uterus. Molecular analysis further demonstrated the dysregulation of several cell differentiation and migration genes (e.g., Krt12, Ace2, and MyoR) that are potentially associated with female reproductive tract development. Moreover, defective smooth muscle development was also revealed in the uteri of the Tgfbr1 cKO mice. Thus, TGFBR1 is required for female reproductive tract integrity and function, and disruption of TGFBR1–mediated signaling leads to catastrophic structural and functional consequences in the oviduct and uterus

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019

    Anterior versus posterior procedure for surgical treatment of thoracolumbar tuberculosis: A retrospective analysis

    No full text
    Background: Approach for surgical treatment of thoracolumbar tuberculosis has been controversial. The aim of present study is to compare the clinical, radiological and functional outcome of anterior versus posterior debridement and spinal fixation for the surgical treatment of thoracic and thoracolumbar tuberculosis. Materials and Methods: 70 patients with spinal tuberculosis treated surgically between Jan 2001 and Dec 2006 were included in the study. Thirty four patients (group I) with mean age 34.9 years underwent anterior debridement, decompression and instrumentation by anterior transthoracic, transpleural and/or retroperitoneal diaphragm cutting approach. Thirty six patients (group II) with mean age of 33.6 years were operated by posterolateral (extracavitary) decompression and posterior instrumentation. Various parameters like blood loss, surgical time, levels of instrumentation, neurological recovery, and kyphosis improvement were compared. Fusion assessment was done as per Bridwell criteria. Functional outcome was assessed using Prolo scale. Mean followup was 26 months. Results: Mean surgical time in group I was 5 h 10 min versus 4 h 50 min in group II (P>0.05). Average blood loss in group I was 900 ml compared to 1100 ml in group II (P>0.05). In group I, the percentage immediate correction in kyphosis was 52.27% versus 72.80% in group II. Satisfactory bony fusion (grades I and II) was seen in 100% patients in group I versus 97.22% in group II. Three patients in group I needed prolonged immediate postoperative ICU support compared to one in group II. Injury to lung parenchyma was seen in one patient in group I while the anterior procedure had to be abandoned in one case due to pleural adhesions. Functional outcome (Prolo scale) in group II was good in 94.4% patients compared to 88.23% patients in group I. Conclusion: Though the anterior approach is an equally good method for debridement and stabilization, kyphus correction is better with posterior instrumentation and the posterior approach is associated with less morbidity and complications

    A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions

    No full text
    MicroRNAs are short (∼22 nucleotides) noncoding RNAs that regulate the stability and translation of mRNA targets. A number of computational algorithms have been developed to help predict which microRNAs are likely to regulate which genes. Gene expression profiling of biological systems where microRNAs might be active can yield hundreds of differentially expressed genes. The commonly used public microRNA target prediction databases facilitate gene-by-gene searches. However, integration of microRNA–mRNA target predictions with gene expression data on a large scale using these databases is currently cumbersome and time consuming for many researchers. We have developed a desktop software application which, for a given target prediction database, retrieves all microRNA:mRNA functional pairs represented by an experimentally derived set of genes. Furthermore, for each microRNA, the software computes an enrichment statistic for overrepresentation of predicted targets within the gene set, which could help to implicate roles for specific microRNAs and microRNA-regulated genes in the system under study. Currently, the software supports searching of results from PicTar, TargetScan, and miRanda algorithms. In addition, the software can accept any user-defined set of gene-to-class associations for searching, which can include the results of other target prediction algorithms, as well as gene annotation or gene-to-pathway associations. A search (using our software) of genes transcriptionally regulated in vitro by estrogen in breast cancer uncovered numerous targeting associations for specific microRNAs—above what could be observed in randomly generated gene lists—suggesting a role for microRNAs in mediating the estrogen response. The software and Excel VBA source code are freely available at http://sigterms.sourceforge.net
    corecore