9 research outputs found

    Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain

    Get PDF
    A key aspect of nearly all single-cell sequencing experiments is dissociation of intact tissues into single-cell suspensions. While many protocols have been optimized for optimal cell yield, they have often overlooked the effects that dissociation can have on ex vivo gene expression. Here, we demonstrate that use of enzymatic dissociation on brain tissue induces an aberrant ex vivo gene expression signature, most prominently in microglia, which is prevalent in published literature and can substantially confound downstream analyses. To address this issue, we present a rigorously validated protocol that preserves both in vivo transcriptional profiles and cell-type diversity and yield across tissue types and species. We also identify a similar signature in postmortem human brain single-nucleus RNA-sequencing datasets, and show that this signature is induced in freshly isolated human tissue by exposure to elevated temperatures ex vivo. Together, our results provide a methodological solution for preventing artifactual gene expression changes during fresh tissue digestion and a reference for future deeper analysis of the potential confounding states present in postmortem human samples

    A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex.

    Get PDF
    Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain1-3. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas-containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities-is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    A transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell types

    No full text
    AbstractThe cerebellar cortex is a well-studied brain structure with diverse roles in motor learning, coordination, cognition and autonomic regulation. However,  a complete inventory of cerebellar cell types is currently lacking. Here, using recent advances in high-throughput transcriptional profiling1–3, we molecularly define cell types across individual lobules of the adult mouse cerebellum. Purkinje neurons showed considerable regional specialization, with the greatest diversity occurring in the posterior lobules. For several types of cerebellar interneuron, the molecular variation within each type was more continuous, rather than discrete. In particular, for the unipolar brush cells—an interneuron population previously subdivided into discrete populations—the continuous variation in gene expression was associated with a graded continuum of electrophysiological properties. Notably, we found that molecular layer interneurons were composed of two molecularly and functionally distinct types. Both types show a continuum of morphological variation through the thickness of the molecular layer, but electrophysiological recordings revealed marked differences between the two types in spontaneous firing, excitability and electrical coupling. Together, these findings provide a comprehensive cellular atlas of the cerebellar cortex, and outline a methodological and conceptual framework for the integration of molecular, morphological and physiological ontologies for defining brain cell types.</jats:p

    Spatial genomics enables multi-modal study of clonal heterogeneity in tissues

    No full text
    The state and behaviour of a cell can be influenced by both genetic and environmental factors. In particular, tumour progression is determined by underlying genetic aberrations1-4 as well as the makeup of the tumour microenvironment5,6. Quantifying the contributions of these factors requires new technologies that can accurately measure the spatial location of genomic sequence together with phenotypic readouts. Here we developed slide-DNA-seq, a method for capturing spatially resolved DNA sequences from intact tissue sections. We demonstrate that this method accurately preserves local tumour architecture and enables the de novo discovery of distinct tumour clones and their copy number alterations. We then apply slide-DNA-seq to a mouse model of metastasis and a primary human cancer, revealing that clonal populations are confined to distinct spatial regions. Moreover, through integration with spatial transcriptomics, we uncover distinct sets of genes that are associated with clone-specific genetic aberrations, the local tumour microenvironment, or both. Together, this multi-modal spatial genomics approach provides a versatile platform for quantifying how cell-intrinsic and cell-extrinsic factors contribute to gene expression, protein abundance and other cellular phenotypes

    The influence of nanoparticulate drug delivery systems in drug therapy

    No full text

    A multimodal cell census and atlas of the mammalian primary motor cortex

    No full text
    none258Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Our results advance the collective knowledge and understanding of brain cell-type organization1-5. First, our study reveals a unified molecular genetic landscape of cortical cell types that integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a consensus taxonomy of transcriptomic types and their hierarchical organization that is conserved from mouse to marmoset and human. Third, in situ single-cell transcriptomics provides a spatially resolved cell-type atlas of the motor cortex. Fourth, cross-modal analysis provides compelling evidence for the transcriptomic, epigenomic and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types. We further present an extensive genetic toolset for targeting glutamatergic neuron types towards linking their molecular and developmental identity to their circuit function. Together, our results establish a unifying and mechanistic framework of neuronal cell-type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.openCallaway, Edward M.; Dong, Hong-Wei; Ecker, Joseph R.; Hawrylycz, Michael J.; Huang, Z. Josh; Lein, Ed S.; Ngai, John; Osten, Pavel; Ren, Bing; Tolias, Andreas Savas; White, Owen; Zeng, Hongkui; Zhuang, Xiaowei; Ascoli, Giorgio A.; Behrens, M. Margarita; Chun, Jerold; Feng, Guoping; Gee, James C.; Ghosh, Satrajit S.; Halchenko, Yaroslav O.; Hertzano, Ronna; Lim, Byung Kook; Martone, Maryann E.; Ng, Lydia; Pachter, Lior; Ropelewski, Alexander J.; Tickle, Timothy L.; Yang, X. William; Zhang, Kun; Bakken, Trygve E.; Berens, Philipp; Daigle, Tanya L.; Harris, Julie A.; Jorstad, Nikolas L.; Kalmbach, Brian E.; Kobak, Dmitry; Li, Yang Eric; Liu, Hanqing; Matho, Katherine S.; Mukamel, Eran A.; Naeemi, Maitham; Scala, Federico; Tan, Pengcheng; Ting, Jonathan T.; Xie, Fangming; Zhang, Meng; Zhang, Zhuzhu; Zhou, Jingtian; Zingg, Brian; Armand, Ethan; Yao, Zizhen; Bertagnolli, Darren; Casper, Tamara; Crichton, Kirsten; Dee, Nick; Diep, Dinh; Ding, Song-Lin; Dong, Weixiu; Dougherty, Elizabeth L.; Fong, Olivia; Goldman, Melissa; Goldy, Jeff; Hodge, Rebecca D.; Hu, Lijuan; Keene, C. Dirk; Krienen, Fenna M.; Kroll, Matthew; Lake, Blue B.; Lathia, Kanan; Linnarsson, Sten; Liu, Christine S.; Macosko, Evan Z.; McCarroll, Steven A.; McMillen, Delissa; Nadaf, Naeem M.; Nguyen, Thuc Nghi; Palmer, Carter R.; Pham, Thanh; Plongthongkum, Nongluk; Reed, Nora M.; Regev, Aviv; Rimorin, Christine; Romanow, William J.; Savoia, Steven; Siletti, Kimberly; Smith, Kimberly; Sulc, Josef; Tasic, Bosiljka; Tieu, Michael; Torkelson, Amy; Tung, Herman; van Velthoven, Cindy T. J.; Vanderburg, Charles R.; Yanny, Anna Marie; Fang, Rongxin; Hou, Xiaomeng; Lucero, Jacinta D.; Osteen, Julia K.; Pinto-Duarte, Antonio; Poirion, Olivier; Preissl, Sebastian; Wang, Xinxin; Aldridge, Andrew I.; Bartlett, Anna; Boggeman, Lara; O’Connor, Carolyn; Castanon, Rosa G.; Chen, Huaming; Fitzpatrick, Conor; Luo, Chongyuan; Nery, Joseph R.; Nunn, Michael; Rivkin, Angeline C.; Tian, Wei; Dominguez, Bertha; Ito-Cole, Tony; Jacobs, Matthew; Jin, Xin; Lee, Cheng-Ta; Lee, Kuo-Fen; Miyazaki, Paula Assakura; Pang, Yan; Rashid, Mohammad; Smith, Jared B.; Vu, Minh; Williams, Elora; Biancalani, Tommaso; Booeshaghi, A. Sina; Crow, Megan; Dudoit, Sandrine; Fischer, Stephan; Gillis, Jesse; Hu, Qiwen; Kharchenko, Peter V.; Niu, Sheng-Yong; Ntranos, Vasilis; Purdom, Elizabeth; Risso, Davide; de BĂ©zieux, Hector Roux; Somasundaram, Saroja; Street, Kelly; Svensson, Valentine; Vaishnav, Eeshit Dhaval; Van den Berge, Koen; Welch, Joshua D.; An, Xu; Bateup, Helen S.; Bowman, Ian; Chance, Rebecca K.; Foster, Nicholas N.; Galbavy, William; Gong, Hui; Gou, Lin; Hatfield, Joshua T.; Hintiryan, Houri; Hirokawa, Karla E.; Kim, Gukhan; Kramer, Daniel J.; Li, Anan; Li, Xiangning; Luo, Qingming; Muñoz-Castañeda, Rodrigo; Stafford, David A.; Feng, Zhao; Jia, Xueyan; Jiang, Shengdian; Jiang, Tao; Kuang, Xiuli; Larsen, Rachael; Lesnar, Phil; Li, Yaoyao; Li, Yuanyuan; Liu, Lijuan; Peng, Hanchuan; Qu, Lei; Ren, Miao; Ruan, Zongcai; Shen, Elise; Song, Yuanyuan; Wakeman, Wayne; Wang, Peng; Wang, Yimin; Wang, Yun; Yin, Lulu; Yuan, Jing; Zhao, Sujun; Zhao, Xuan; Narasimhan, Arun; Palaniswamy, Ramesh; Banerjee, Samik; Ding, Liya; Huilgol, Dhananjay; Huo, Bingxing; Kuo, Hsien-Chi; Laturnus, Sophie; Li, Xu; Mitra, Partha P.; Mizrachi, Judith; Wang, Quanxin; Xie, Peng; Xiong, Feng; Yu, Yang; Eichhorn, Stephen W.; Berg, Jim; Bernabucci, Matteo; Bernaerts, Yves; Cadwell, Cathryn RenĂ©; Castro, Jesus Ramon; Dalley, Rachel; Hartmanis, Leonard; Horwitz, Gregory D.; Jiang, Xiaolong; Ko, Andrew L.; Miranda, Elanine; Mulherkar, Shalaka; Nicovich, Philip R.; Owen, Scott F.; Sandberg, Rickard; Sorensen, Staci A.; Tan, Zheng Huan; Allen, Shona; Hockemeyer, Dirk; Lee, Angus Y.; Veldman, Matthew B.; Adkins, Ricky S.; Ament, Seth A.; Bravo, HĂ©ctor Corrada; Carter, Robert; Chatterjee, Apaala; Colantuoni, Carlo; Crabtree, Jonathan; Creasy, Heather; Felix, Victor; Giglio, Michelle; Herb, Brian R.; Kancherla, Jayaram; Mahurkar, Anup; McCracken, Carrie; Nickel, Lance; Olley, Dustin; Orvis, Joshua; Schor, Michael; Hood, Greg; Dichter, Benjamin; Grauer, Michael; Helba, Brian; Bandrowski, Anita; Barkas, Nikolaos; Carlin, Benjamin; D’Orazi, Florence D.; Degatano, Kylee; Gillespie, Thomas H.; Khajouei, Farzaneh; Konwar, Kishori; Thompson, Carol; Kelly, Kathleen; Mok, Stephanie; Sunkin, SusanCallaway, Edward M.; Dong, Hong-Wei; Ecker, Joseph R.; Hawrylycz, Michael J.; Huang, Z. Josh; Lein, Ed S.; Ngai, John; Osten, Pavel; Ren, Bing; Tolias, Andreas Savas; White, Owen; Zeng, Hongkui; Zhuang, Xiaowei; Ascoli, Giorgio A.; Behrens, M. Margarita; Chun, Jerold; Feng, Guoping; Gee, James C.; Ghosh, Satrajit S.; Halchenko, Yaroslav O.; Hertzano, Ronna; Lim, Byung Kook; Martone, Maryann E.; Ng, Lydia; Pachter, Lior; Ropelewski, Alexander J.; Tickle, Timothy L.; Yang, X. William; Zhang, Kun; Bakken, Trygve E.; Berens, Philipp; Daigle, Tanya L.; Harris, Julie A.; Jorstad, Nikolas L.; Kalmbach, Brian E.; Kobak, Dmitry; Li, Yang Eric; Liu, Hanqing; Matho, Katherine S.; Mukamel, Eran A.; Naeemi, Maitham; Scala, Federico; Tan, Pengcheng; Ting, Jonathan T.; Xie, Fangming; Zhang, Meng; Zhang, Zhuzhu; Zhou, Jingtian; Zingg, Brian; Armand, Ethan; Yao, Zizhen; Bertagnolli, Darren; Casper, Tamara; Crichton, Kirsten; Dee, Nick; Diep, Dinh; Ding, Song-Lin; Dong, Weixiu; Dougherty, Elizabeth L.; Fong, Olivia; Goldman, Melissa; Goldy, Jeff; Hodge, Rebecca D.; Hu, Lijuan; Keene, C. Dirk; Krienen, Fenna M.; Kroll, Matthew; Lake, Blue B.; Lathia, Kanan; Linnarsson, Sten; Liu, Christine S.; Macosko, Evan Z.; Mccarroll, Steven A.; Mcmillen, Delissa; Nadaf, Naeem M.; Nguyen, Thuc Nghi; Palmer, Carter R.; Pham, Thanh; Plongthongkum, Nongluk; Reed, Nora M.; Regev, Aviv; Rimorin, Christine; Romanow, William J.; Savoia, Steven; Siletti, Kimberly; Smith, Kimberly; Sulc, Josef; Tasic, Bosiljka; Tieu, Michael; Torkelson, Amy; Tung, Herman; van Velthoven, Cindy T. J.; Vanderburg, Charles R.; Yanny, Anna Marie; Fang, Rongxin; Hou, Xiaomeng; Lucero, Jacinta D.; Osteen, Julia K.; Pinto-Duarte, Antonio; Poirion, Olivier; Preissl, Sebastian; Wang, Xinxin; Aldridge, Andrew I.; Bartlett, Anna; Boggeman, Lara; O’Connor, Carolyn; Castanon, Rosa G.; Chen, Huaming; Fitzpatrick, Conor; Luo, Chongyuan; Nery, Joseph R.; Nunn, Michael; Rivkin, Angeline C.; Tian, Wei; Dominguez, Bertha; Ito-Cole, Tony; Jacobs, Matthew; Jin, Xin; Lee, Cheng-Ta; Lee, Kuo-Fen; Miyazaki, Paula Assakura; Pang, Yan; Rashid, Mohammad; Smith, Jared B.; Vu, Minh; Williams, Elora; Biancalani, Tommaso; Booeshaghi, A. Sina; Crow, Megan; Dudoit, Sandrine; Fischer, Stephan; Gillis, Jesse; Hu, Qiwen; Kharchenko, Peter V.; Niu, Sheng-Yong; Ntranos, Vasilis; Purdom, Elizabeth; Risso, Davide; de BĂ©zieux, Hector Roux; Somasundaram, Saroja; Street, Kelly; Svensson, Valentine; Vaishnav, Eeshit Dhaval; Van den Berge, Koen; Welch, Joshua D.; An, Xu; Bateup, Helen S.; Bowman, Ian; Chance, Rebecca K.; Foster, Nicholas N.; Galbavy, William; Gong, Hui; Gou, Lin; Hatfield, Joshua T.; Hintiryan, Houri; Hirokawa, Karla E.; Kim, Gukhan; Kramer, Daniel J.; Li, Anan; Li, Xiangning; Luo, Qingming; Muñoz-Castañeda, Rodrigo; Stafford, David A.; Feng, Zhao; Jia, Xueyan; Jiang, Shengdian; Jiang, Tao; Kuang, Xiuli; Larsen, Rachael; Lesnar, Phil; Li, Yaoyao; Li, Yuanyuan; Liu, Lijuan; Peng, Hanchuan; Qu, Lei; Ren, Miao; Ruan, Zongcai; Shen, Elise; Song, Yuanyuan; Wakeman, Wayne; Wang, Peng; Wang, Yimin; Wang, Yun; Yin, Lulu; Yuan, Jing; Zhao, Sujun; Zhao, Xuan; Narasimhan, Arun; Palaniswamy, Ramesh; Banerjee, Samik; Ding, Liya; Huilgol, Dhananjay; Huo, Bingxing; Kuo, Hsien-Chi; Laturnus, Sophie; Li, Xu; Mitra, Partha P.; Mizrachi, Judith; Wang, Quanxin; Xie, Peng; Xiong, Feng; Yu, Yang; Eichhorn, Stephen W.; Berg, Jim; Bernabucci, Matteo; Bernaerts, Yves; Cadwell, Cathryn RenĂ©; Castro, Jesus Ramon; Dalley, Rachel; Hartmanis, Leonard; Horwitz, Gregory D.; Jiang, Xiaolong; Ko, Andrew L.; Miranda, Elanine; Mulherkar, Shalaka; Nicovich, Philip R.; Owen, Scott F.; Sandberg, Rickard; Sorensen, Staci A.; Tan, Zheng Huan; Allen, Shona; Hockemeyer, Dirk; Lee, Angus Y.; Veldman, Matthew B.; Adkins, Ricky S.; Ament, Seth A.; Bravo, HĂ©ctor Corrada; Carter, Robert; Chatterjee, Apaala; Colantuoni, Carlo; Crabtree, Jonathan; Creasy, Heather; Felix, Victor; Giglio, Michelle; Herb, Brian R.; Kancherla, Jayaram; Mahurkar, Anup; Mccracken, Carrie; Nickel, Lance; Olley, Dustin; Orvis, Joshua; Schor, Michael; Hood, Greg; Dichter, Benjamin; Grauer, Michael; Helba, Brian; Bandrowski, Anita; Barkas, Nikolaos; Carlin, Benjamin; D’Orazi, Florence D.; Degatano, Kylee; Gillespie, Thomas H.; Khajouei, Farzaneh; Konwar, Kishori; Thompson, Carol; Kelly, Kathleen; Mok, Stephanie; Sunkin, Susa
    corecore