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Single-cell transcriptomics can provide quantitative molecular signatures for large,
unbiased samples of the diverse cell typesin the brain'. With the proliferation of
multi-omics datasets, amajor challenge is to validate and integrate resultsinto a
biological understanding of cell-type organization. Here we generated transcriptomes
and epigenomes from more than 500,000 individual cells in the mouse primary motor
cortex, astructure that has an evolutionarily conserved role inlocomotion. We
developed computational and statistical methods to integrate multimodal data and
quantitatively validate cell-type reproducibility. The resulting reference atlas—
containing over 56 neuronal cell types that are highly replicable across analysis
methods, sequencing technologies and modalities—is a comprehensive molecular and
genomic account of the diverse neuronal and non-neuronal cell types in the mouse
primary motor cortex. The atlasincludes a population of excitatory neurons that
resemble pyramidal cellsinlayer 4 in other cortical regions*. We further discovered
thousands of concordant marker genes and gene regulatory elements for these cell
types. Our results highlight the complex molecular regulation of cell types in the brain
and will directly enable the design of reagents to target specific cell types in the mouse
primary motor cortex for functional analysis.

The cellular components of brain circuits are extraordinarily diverse®®.
Single-cell molecular assays, especially transcriptomic measurements
by RNA sequencing (RNA-seq), have accelerated the discovery of cell
types across brain regions and in diverse species’. Recent advances
include single-cell transcriptomic datasets with more than 10° individ-
ual cells, identifying hundreds of neuronal and non-neuronal cell types
across the mouse nervous system'. As the number of profiled cells
grows into the millions, a key question is whether these data will con-
verge towards acomprehensive, coherent taxonomy. Although acom-
prehensive cell atlas should incorporate anatomical and physiological

information, the high throughput of single-cell sequencing assays pre-
sents an opportunity for establishing abroad-based transcriptomic and
epigenomic cell atlas. Molecular and genomic cell signatures will drive
progress across modalities and help to obtain functional information.

Within the BRAIN Initiative Cell Census Network (BICCN), we aim
to create an atlas of cell types across the brain of several mammalian
species by integrating multiple single-cell omics approaches. We
selected the primary motor cortex (MOp) (Extended Data Fig. 1a-d)
as the starting point for our joint efforts owing to its relatively con-
served structure and function across mammalian species. The MOp
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lacks species-specific cellular structures, such as the whisker barrels
in the rodent primary somatosensory cortex and the elaborate layer
4 (L4) with multiple sublayers in the primate primary visual cortex.
Traditionally, the MOp is considered to lack a cytoarchitechtonically
defined granular layer (L4), although neuronsin the MOp with L4-like
connectivity have beenidentified*. Our mouse MOp atlasis a case study
of the expansive potential and the technical limitations of single-cell
molecular methods for comprehensive brain-wide analysis of cell types.

Single-cell transcriptomics identifies cell-type marker genes and
gene modules that shape functions such as the mode of synaptic
communication®. Epigenomic measurements of DNA methylation
and open chromatin provide signatures of gene regulation, including
non-coding regulatory regions such as enhancers. Neurons acquire
unique patterns of CG and non-CG DNA methylation during postnatal
development® and have cell-type-specific open chromatin®. Together,
transcription and epigenetic modifications establish attractorsina
cell-state space that corresponds to cell types'>?, Here we integrated
large-scale single-cell transcriptomic and epigenomic datasets to
achieve areference taxonomy for the adult mouse MOp.

Multimodal molecular census of mouse MOp

We produced nine datasets, including seven single-cell or single-nucleus
transcriptomic dataset (single-cell RNA-seq (scRNA-seq) and
single-nucleus RNA-seq (snRNA-seq) using 10x v2, v3 and SMART-Seq
v4;n=526,373 high-quality cells), one single-nucleus DNA methylation
dataset (snmC-seq2; n=9,872) and one single-nucleus open chromatin
dataset (single-nucleus assay for transposase-accessible chromatin
using sequencing (snATAC-seq); n = 81,196) (Extended Data Fig. 1e, f,
Supplementary Table 1). These span a range of technologies, assaying
different numbers of cells, with different depths of sequence coverage
per cell, and assessing different biological features (Fig.1a). The datasets
reflect the trade-off between the number of sequenced molecules per
cell, which depends on cell size and the efficiency of RNA or DNA cap-
ture, and the total number of cells that can be assayed for a fixed total
cost. Our datasets include single-nucleus transcriptomes from over
175,000 cells (using the 10x Chromium 3’ v3 platform), which captures
amedian of3,100-12,700 unique molecular identifiers (UMIs) per cell.
By contrast, full-length transcript sequencing using SMART-Seq v4
captured agreater number of unique molecular fragments per cell (1 mil-
lion-2.1million), but covered fewer cells (approximately 6,300 cells per
dataset). Dataonsingle-nucleus DNA methylation provided deep cover-
age of the epigenome per cell (median of 1.66 million unique sequenced
DNA fragments, covering 6.2% of the genome) for amodest number of
cells®** (approximately 9,800 cells). Finally, snATAC-seq data scaled to
over 81,000 cellsbut sampled fewer DNA fragments for individual cells
(median of 3,778 unique fragments per cell; Supplementary Table 1)".

Subsampling RNA-seq datasets (Extended Data Fig. 2b, Supplemen-
tary Table1) showed that scRNA-seq generally detects more genes per
cell (up to approximately 7,100 median genes per cell for10xand 10,000
for SMART) than snRNA-seq (up to approximately 4,000 for 10x and
5,800 for SMART). The10x v3 platform detected 60-100% more genes
than10xv2. The number of genes detected per cellin the snRNA-seq10x
v3Bdataset (median of approximately 4,000 genes), using animproved
nucleusisolation protocol®” (Methods), was substantially higher than the
other snRNA-seq datasets (1,700-3,500 genes) and was similar to the
scRNA-seq10x v3 dataset when compared at the same sequencing depth.

We created webresourcestointeractively access, explore, visualize
and analyse the raw and processed datasets (Extended DataFig.1g, h).

A consensus transcriptomic atlas of MOp

To establish a transcriptomic reference atlas of the mouse MOp, we
jointly analysed seven scRNA-seq and snRNA-seq datasets. The data-
sets were mutually consistent, with strongly correlated expression of
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cell-type marker genes (Extended Data Fig. 2a, d, e) despite different
sensitivity to genes with low expression (Extended Data Fig. 2c). We
used computational dataintegration (Methods) tojointly cluster and
identify 116 cell types using all the datasets (Fig. 1b, ¢, Extended Data
Fig. 2d, Supplementary Tables 2, 3). Cells and nuclei, assayed by each
of the technologies and in each batch, grouped primarily by cell type
and not by dataset (Fig. 1b). Residual systematic differences between
nuclear and cellular RNA-seq assays were observed in some clusters as
agradient of transcriptomes from different datasets. We performed
hierarchical clustering to uncover the relationships among types within
each major cell class: GABAergic inhibitory neurons (n = 59 types),
glutamatergic excitatory neurons (n = 31) and non-neurons (n =26)
(Fig.1d). Six of the transcriptomic datasets used cell-sorting strate-
giestoenrich neuronsrelative to non-neuronal cells, while the largest
dataset (snRNA-seq 10x v3 B) represents an unbiased sample of both
neuronal and non-neuronal cells. Despite these differences, the rela-
tive frequency of cell types was highly consistent across datasets after
normalizing for the total sample of each major class (Supplementary
Table 3). Most cell types (86 out of 116) were present inall of the datasets,
whereas therest were non-neuronal types that were under-sampledin
many datasets or were extremely rare types (less than 0.01% of all cells).

To facilitate the use of these cell types by investigators, we adopted
anomenclature that incorporates multiple anatomical and molecu-
lar identifiers. For example, we identified four clusters of excitatory
neurons (expressing Slc17a7, which encodes the vesicular glutamate
transporter VGLUTI) that express a deep layer marker, Fezf2, as
well as Fam84b, which is a unique marker of the pyramidal tract® or
extratelencephalically- projecting neurons (ET) * (Fig. 1e). Thus, we
labelled these neurons ‘L5ET 1-4". We divided GABAergic neuronsinto
five major subclasses based on marker genes: Lamp$, Sncg and Vip,
which label cells derived from the caudal ganglionic eminence, and
Sst and Pvalb, which label cells derived from the medial ganglionic
eminence. Finer distinctions among GABAergic types are identified
by secondary markers (for example, Sst and Myh8). Tables of cluster
accession IDs and differentially expressed genes between every pair
of celltypes help totrack the cell types and their underlying molecular
evidence” (Supplementary Tables 3, 6).

We compared our MOp atlas with a large dataset of neurons from
the mouse anterolateral motor cortex and the primary visual cortex
assayed by scRNA-seq (SMART-Seq)® (Extended Data Fig. 3a). We found
one-to-one matches between most of the 116 MOp cell types and the 102
cell types previously defined in the anterolateral motor cortex. Four
types of L5 ET neurons correspond with three previously described
deep layer excitatory neurons with distinct subcortical projection
patterns to the thalamus and the medulla’® (Extended Data Fig. 3b, c).
These types, which were associated with distinct roles in movement
planning and initiation, had consistent patterns of differential gene
expressionacross the transcriptomic datasets (Extended DataFig. 4).

Themotor cortexis traditionally considered to lack adiscernible L4
based on the absence of a clear cytoarchitectonic signature®. However,
recent anatomical studies have identified a population of pyramidal
cellslocated between L3 and L5, with hallmarks of L4 neurons includ-
ing thalamicinput and outputsto L4 and L2/3 (ref.*). We identified two
intratelencephalically projecting (IT) clusters, containing over 99,000
cells, which express acombination of markers usually associated with
L4 (ref.?°), including Cux2, Rspol and Rorb (both clusters), and those
associated with L5, for example, Fezf2 (one cluster) (Fig. 1e, Extended
Data Fig. 5a). We confirmed the specificity of the expression of these
genesinthe MOp by insitu hybridization (Extended DataFig. 5b). These
cells represent a substantial fraction (18% or more) of all excitatory
neurons in each dataset. Therefore, we labelled these clusters L4/5.
Moreover, the localization of cells with these gene markers in middle
layers is further supported by spatial transcriptomics?.

Using our integrated dataset, we directly compared the nuclear and
cytoplasmictranscriptomes of MOp cells. Both modalities can achieve
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marker genes for excitatory (top) and inhibitory (bottom) cell classes, across

comparable clustering resolution (Extended Data Fig. 2d), as previously
reported?, but they provide distinct information about some cell types
and transcripts. We found that the long non-coding RNA MalatI was
enrichedinsnRNA-seq, consistent with its nuclear localization® (Fig. If,
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Extended DataFig. 2f). By contrast, mMRNA of the protein-coding gene
Ywhaz was strongly depleted from the nucleus.

We used MetaNeighbor to assess the cross-dataset replicability of
clusters defined separately using each of the seven transcriptomic
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datasets* (Supplementary Table 4). We found 70 clusters with a
high replicability (area under receiver operating characteristic
(AUROC) >0.7 across at least two datasets) (Fig.1g). Most clusters had
reciprocal best matches across all datasets (Extended Data Fig. 8a). By
comparingtheresults of three different widely used single-cell analysis
packages®?, we found lower replicability for fine-grained partitions
of cells into 30 or more clusters (Fig. 1h). These results highlight the
importance of careful biologically informed cluster analyses.

Combining transcriptomes and epigenomes

Regions of open chromatin and patterns of DNA methylation, includ-
ing CG and non-CG methylation, are cell-type-specific signatures of
neuronal identity and can be assayed in single nuclei®". We applied
snmC-seq2 (ref.**) (9,876 cells) and snATAC-seq™ (81,196 cells) assays
to nuclei isolated from the same MOp samples. Independent analy-
ses of each epigenomic dataset identified n =42 cell types using DNA
methylation, and n=33 celltypes using open chromatin (Extended Data
Fig.6a-d, Supplementary Table 4). Marker genes for major cell classes
had corresponding patterns of cell-type-specific depletion of non-CG
methylation (low mCH; Extended Data Fig. 6b) and open chromatinin
the gene body (Extended Data Fig. 6d).

We integrated eight transcriptomic and epigenomic datasets using
two computational methods (linked inference of genomic experimen-
tal relationships (LIGER)* and SingleCellFusion®) to produce a uni-
fied, multimodal cell census (Fig. 2a-c, Extended Data Figs. 6e-j,7a, b,
Supplementary Table 5). We reasoned that cells of the same type meas-
uredineachmodality canbeidentified based on correlated gene-centric
features. Gene expression is negatively correlated with gene body
non-CG methylation® and positively related to the gene body and pro-
moter ATAC-seq read density®.. Although distal regulatory elements
(for example, enhancers) were not used for dataset integration, they
were subsequently analysed at the level of integrated cell types.

By combining cells fromintegrated clustersinto pseudo-bulk tracks,
we obtained base-resolution epigenomic and transcriptomicinforma-
tion (Fig. 2f, g) (https://brainome.ucsd.edu/BICCN_MOp). Toillustrate,
we highlight thelocus of Tac1, which encodes a precursor of the neuro-
peptide substance Pand marks a subset of interneurons derived from
the medial ganglionic eminence®2. We confirmed TacI mRNA expression
in parvalbumin-expressing neurons marked by Reln and Calb1. We
further observed accessible chromatin and low DNA methylation at CG
sites withinthe body of the Tacl gene and atalocation approximately
24 kb upstream of the transcription start site (Fig. 2f).

Both computational integration methods (LIGER and SingleCellFu-
sion) identified 56 cell types, which showed a high degree of concord-
ance betweenthe methods and with the transcriptome-based consensus
clusters (Extended DataFig.7a-d).Indeed, integrated analysis identified
more cell types than the single-modality analysis of each epigenomic
dataset, whilelargely concurring with theindependent clusters (Extended
Data Fig. 7b). Integration revealed notable examples of cross-modal
cell-type-specificsignatures. For example, Tshz2is aspecific marker of L5
near-projectingexcitatory neurons, withlow DNA methylation (mCG and
mCH), open chromatinand strong cell-type-specific expression (Fig. 2d,
e,g). Theclose correspondence between transcriptomic and epigenomic
signatures at Tshz2, and at 35 markers of other cell types, was evident
across each of the datasets (Fig. 2d). Importantly, these pseudo-bulk
tracksinclude data, such as CG methylation and intergenic snATAC-seq
signals, that were not used for the multimodal computational integration.

In addition to concordant cross-modal signals, we also found loci
where transcriptomic and epigenomic data diverged. For instance, at
Lhx9,wefound high DNA methylationin L6b excitatory neurons, with it-
tleornomethylationinany other cell type (Fig. 2g, Extended DataFig. 7f).
Despite this cell-type-specific DNA methylation, we found no expression
of Lhx9RNA in any cell type and no significant enrichment of ATAC-seq
reads. Lhx9 has been implicated in early developmental patterning of
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the caudal forebrain and may be transcriptionally silenced in the adult,
potentially through Polycomb-mediated repression®. Other regulators
of neural development, such as Pax6 and DIx1/2, have a similar epige-
netic profile with cell-type-specifichypermethylation. This pattern may
representavestigial epigenetic signature of embryonic development™,

Cell-type-specific epigenomic marks

Epigenomic data identify potential regulatory regions, such as dis-
tal enhancers, marked by open chromatin and low DNA methylation
(mCG). These modalities have complementary technical characteris-
tics, such as the number of cells assayed (higher for open chromatin)
andthe genomic coverage per cell (higher for DNA methylation; Fig.1a).
We first defined differentially methylated regions (DMRs) and chro-
matin accessibility peaks independently, identifying over 1.3 million
DMRs covering 225 Mb (8.3% of the genome) and 300,000 accessible
regions (170 Mb) (Fig.3a,b).Ineachcell type, alarge fraction of acces-
sibleregions (28-89%) overlapped hypomethylated DMRs (Fig. 3a). By
contrast, many DMRs did not overlap accessibility peaks (Fig. 3b). In
some cases, these DMRs coincided with broad open chromatin regions,
such as whole gene bodies, which had no narrow ATAC peaks.

By downsampling data from two abundant cell types (L2/3IT and
L6 CT neurons), we found that the number of detectable accessibility
peaks was saturated after sampling around 1,000 cells (Fig. 3c). By
contrast, the number of DMRs reached a plateau after sampling 200-
300 cells (Fig. 3d). Furthermore, the number of significantly enriched
transcription factor motifsincreased with the number of cells (Fig. 3e);
althoughfor L6 CT neurons, it reached a plateau of approximately five
key motif families after sampling around 100 cells.

Combining both epigenomic datasets, we identified 250,000 puta-
tive enhancers with fine resolution® (Supplementary Table 7). Putative
enhancers were often found indistal regions, at least 2 kb fromthe near-
est transcription start site (Fig. 3h, i). Sequence motifs of several tran-
scription factor families were enriched in each cell type (Fig. 3f), such
as RfxmotifsinL2/3 neurons. Using the transcriptomic data, we found
that Rfx3, but not other Rfx family members, was specifically enriched
inL2/3 neurons and had low methylation and accessible chromatinin
the gene body as well as approximately 15 kb upstream of the Rfx3 pro-
moter (Fig.3g). These data suggest akey role for Rfx3inL2/3 neurons.

Reproducible cell types across datasets

Different molecular modalities, sampling strategies, sequencing tech-
nologies and computational analysis procedures can lead to diver-
gent estimates of the total number of cell types. We used systematic
cross-dataset analyses to assess the statistical and biological reproduc-
ibility of cell types and constrain the range of plausible numbers of cell
types based on current single-cell sequencing data.

We first addressed the effect of the number of sampled cells on the
resolution of the cell atlas, by downsampling each dataset followed by
clustering analysis with afixed resolution parameter (Fig. 4a). The num-
ber of detected neuronal cell types (clusters) increased logarithmically
with cellnumber, with relatively few additional clusters detected after
sampling approximately 80,000 cells or nuclei. Notably, the depend-
ence of the number of clusters on the number of sampled cells was
similar for all modalities and datasets, showing that the number of
sampled cells is a key determinant of cluster resolution.

Any dataset canbe divided intoincreasingly fine-grained clusters, yet
they may not reflect biologically meaningful or reproducible cell-type
distinctions. We used cross-validationto objectively measure the general-
izability of cluster-based descriptions of the data (Extended Data Fig. 8b).
We first used within-dataset cross-validation, dividing the features (genes
or genomic bins) into clustering and validation sets. After clustering all
cells using the clustering feature set, we split the cells into training and
test sets. We used the training cells to learn the validation set features
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foreachcluster. Finally, we compared the validation set featureswiththe  ofreliable clusters. Finally, we repeated this cross-validation procedure
held-out datafor test cellsto measure the meansquarederror.Weapplied  foreach dataset in combination with systematic downsampling (Fig.4c).
this procedure to each dataset with a range of clustering resolutions, All of the datasets (except sSnRNA SMART-Seq) supported approxi-
resulting in a U-shaped cross-validation curve for the test seterrorasa  mately 100 or more cell types when a sufficient number of cells was
functionof the number of clusters (Fig.4b, Extended DataFig.8c,d). The  sampled. The number of cells required to achieve this resolution was
location ofthe minimum mean squarederrorisanestimate of thenumber  larger for snATAC-seq (with few reads per cell) than for RNA-seq or
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Fig.3|Epigenomicsignatures ofregulatory elementsinthe MOp.
a, b, Regulatory regions wereidentified ineach cell type using DMRs

(n=1,302,403) (a) and open chromatin regions (ATAC peaks; n=316,788) (b)
inmultimodalintegrated clusters.c,d, Saturation analysis for two excitatory
subclasses shows the number of regulatory regions detected as afunction

of sampled cells. e, Saturation analysis of the number of transcription
factor DNA-binding sequence motifs enriched in DMRs of each cell type.

snmC-seq2. This observation is consistent with the relative sparseness
ofthe snATAC-seq data. We further found that sScRNA-seq and snRNA-seq
datasets with the largest numbers of cells could support very high cluster
resolution with up to approximately 600 clusters. Our cross-validation
analysis shows that these fine-grained clusters capture genuine transcrip-
tomicstructure, whichis correlated and replicable across cells and across
genomicfeatures. However, at least some of this structure probably cor-
responds to continuous variation within discrete cell types, rather than
discrete cell-type categories®. Moreover, the cross-validation analysis
shows no sharp error minimum at a particular value of the number of
clusters. Instead, the U-shaped cross-validation curve has abroad basin
covering arange of plausible values (Fig. 4b, Extended Data Fig. 8c, d).

To more stringently test the reproducibility of cell types, we per-
formed cross-dataset cross-validation (Extended Data Fig. 8b). This
procedure uses arandomly chosen half of genomic features to perform
dataintegration and joint analysis of eight datasets using SingleCellFu-
sion. Next, we used thejoint cluster labels to perform cross-validation
ineach dataset, asin the within-dataset procedure above. This analysis
supported amaximum resolution of approximately 100 clusters when

testing using the scRNA SMART-Seq data (Fig. 4d).
As an alternative to joint analysis of multiple datasets, which could

potentially discern spurious correlations owing to computational data
integration, we also took a more stringent approach to cross-validation.
Using the independent cluster analysis of each dataset, we performed
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f, Enrichment of motifs for selected transcription factor families as a function
ofthe number of cellssampled. g, Browser views of loci containing cell-type-
specificregulatory elements (grey highlighted regions). The Rfx3geneis
differentially expressedinL2/3 neurons and has an enhancer specifictoL2/3
located approximately 15 kb upstream of the promoter region. h, i, Examples of
intergenicregions with accessibility and demethylation specifictoL6 CT (h) or
L2/3 (i) neurons. The black barsindicate predicted regulatory regions.

Discussion

Our MOp cell atlas represents the most comprehensive, integrated
collection of single-cell transcriptomic and epigenomic datasets for a

MetaNeighbor analysis to assess the replicability of clusters®. We
found that the median replicability score for all clusters was high
(AUROC > 0.8) for integrated analyses with coarse resolution (less
than 50 clusters, level 1analyses; Fig. 4e). The more fine-grained joint
analyses (level 2; 50-120 clusters) were also largely supported by
MetaNeighbor, but with alower median replicability score around 0.7.
Notably, we found a high degree of consistency in the results of joint
cluster analysis when using different computational methods (Fig. 4f).
Finally, we explored whether cell-type signatures in the MOp were
stable across different scRNA-seq and snRNA-seq platforms. Using four
RNA-seqdatasets (scCRNASMART,snRNASMART, scRNA10xv3AandsnRNA
10x v3 A), we performed clustering on a network of samples (Conos™) to
link cells across datasets and determine joint clusters. We compared the
clustering results based oninter-platform network connections only ver-
sus results that also included connections across datasets of the same
platform (Extended DataFig. 8e). Most neurontypes, except parvalbumin-
expressinginterneuronsand L6 CT, had only amodest differencein cluster
stability using both approaches (Fig. 4g) and alow level of inter-platform
divergenceintheir cell-type transcriptomic signatures (Fig. 4h).
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Fig.4 |Robustness and reproducibility of cell types withinand across
datasets. a, The number of clusters estimated for each dataset after sampling a
fraction of the total cells (Leiden clustering, resolutionr=6; colour scheme as
inFig.1a).b, Meansquared error (MSE) as afunction of the number of clusters
for scRNA SMART-Seq. The minimum MSE and the minimum MSE +1s.e.m.
define arange of optimal cluster resolutions. The shaded region shows the
s.e.m.derived from cross-validation with n=5random data partitions.

c,d, The number of clusters estimated by within-dataset (c) or across-dataset
(d) cross-validation (n=>5data partitions) (colour scheme as in Fig. 1a). For
cross-dataset comparison (d), the number of clusters isbased on the minimum
test MSE for one dataset after joint multimodal clustering. The grey dotted
lines are shown when the number of cells (xaxis) exceeds the dataset size, in
which case all of the cells from the corresponding modality were used.

e, Thetrade-offbetween the number of clusters and replicability (median
MetaNeighbor AUROC) of consensus clustering methods applied at various
resolutions. f, Agreement between consensus clustering results using different
computational procedures. Inset: zoomed-out view showing that allmethods
have high cluster purity and adjusted Rand index. g, Transcriptomic platform
consistency is assessed by cross-dataset cluster stability analysis (Conos) using
complete networks, and usinginter-platform edges only. Glutamatergic and
Pvalb subclasses have reduced stability in inter-platform comparison. Data
pointsshown=20independentrandom samples, each containing 95% of the
total cells. h, Cross-platform expression divergence (Jensen-Shannon) for
major cell subclasses. The box-and-whisker plots (g, h) show the median, the
interquartile range (25-75th percentile), and the smaller of the datarange
(minimum to maximum) or the 1.5 times the interquartile range. *False
discovery rate (FDR) <0.05, *FDR < 0.0001, Wilcoxon rank-sum test,
Benjamini-Hochberg correction.

single brainregion to date. We generated a high-resolution consensus
transcriptomic cell-type taxonomy that integrates seven scRNA-seq
and snRNA-seq datasets collected from the MOp with six experimen-
tal methods. Our transcriptomic taxonomy is highly consistent with
apreviously published transcriptomic cell census from the primary
visualand the anterolateral motor cortices based on SMART-Seq alone’.
We found that gene expression profiles were largely consistent across
methodologies, while providing complementary information about
particular genes such as nucleus-enriched transcripts. The MOp atlas
demonstrates the power of atwo-pronged strategy that combines broad
sampling of diverse cell types (for example, 10x with a large number
of cells and shallow sequencing) with deep sequencing (for example,
SMART-Seq) to precisely characterize gene expression profiles for each
cell type. This strategy should guide future cell census efforts, by the
BICCN and others, at the scale of whole brains and in other species.

We further demonstrated multimodalintegration of transcriptomic
(scRNA-seqand snRNA-seq), DNA methylation (snmC-seq2) and chroma-
tinaccessibility (snATAC-seq) datasets using two computational meth-
ods (SingleCellFusionand LIGER). Itis possible to directly establish links
between molecular modalities through simultaneous measurement of
multiple signatures in the same cell*®. However, multimodal single-cell
assays remain challenging and often provide lower depth or resolution
of data in each modality than single-modality assays. Moreover, it is
important to show that data collected from different animals, across
differentlaboratories and using different experimental platforms and
assays, nevertheless canbeintegrated within a unified cell-type atlas. By
correlatingmRNA transcripts, gene body methylation and accessibility
peaks, we showed that different types of data canbe integrated without
forfeiting the resolution of more than 50 fine-grained neuron types.
Integrative analysis of transcriptional and epigenetic signatures of cell
identity will enable the development of tools based on cell-type-specific
enhancers for cell targeting and manipulation.

Our data provide new insights into the molecular architecture of
cell types in the MOp. Tacl, encoding the neuropeptide substance
P precursor, marks a subset of parvalbumin-expressing cells and is
strongly upregulated in the rodent MOp following motor learning®>*.
We foundthat Taclisexpressedintwo subtypes of MOp interneurons
(Pvalb_Calbl and Pvalb_Reln), and our epigenomic data identified a
cell-type-specificenhancer approximately 24 kb upstream of the gene
promoter. We provide new evidence that the MOp has an excitatory
neuron population that expresses markers of L4 thalamic-recipient
neurons, including Cux2, Rspol and Rorb*. The laminar distribution of
these cells has been confirmed by in situ hybridization of these marker
genes and in a parallel study by MERFISH?. This discovery revises the
traditional understanding of the MOp as an agranular cortex lack-
ing L4. We also found multiple types of L5 ET neurons that align with
recently described populations with distinct subcortical projection
targets'®. Moreover, we identified networks of gene expression regu-
latory elements, marked by overlapping regions of open chromatin
and cell-type-specific demethylation, that have sequence motifs that
identify the key transcriptional regulators. For example, by combining
epigeneticand gene expression data, weidentified Rfx3as acandidate
factor for L2/3 IT cells. We also identified genes with non-canonical
regulatory signatures, suchas enrichment of mCGin Lhx9, specifically
inLéb excitatory cells.

We took advantage of the unprecedented diversity of large-scale
datasets, generated inacoordinated manner fromthe mouse MOp, to
critically evaluate the robustness and reliability of the cell-type taxono-
mies obtained by clustering molecular datasets. Our cross-validation
analysis of individual datasets and multimodalintegration objectively
constrains the range of cluster resolutions supported by the datawith-
outoverfitting. Rather than supporting asingle, definitive number of
cell types in the mouse MOp, our studies instead point to a range of
cluster resolutions spanning from approximately 30 to 116 cell types
that are supported by the data. Indeed, discrete cell-type categories
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may be aninappropriate description at afine-grained level of analysis,
inwhich the molecular profiles of cells vary along a continuum.

By integrating nine large-scale single-cell transcriptomic and epig-
enomic datasets, we have comprehensively classified and annotated
the diversity of cell types in the adult mouse MOp. Our study demon-
strates general procedures for objective cross-dataset comparison
and statistical reproducibility analysis, as well as standards and best
practices that can be adopted for future large-scale studies. Together
with complementary BICCN datasets from spatial transcriptomics,
connectivity and physiology, as well as cross-species comparative
studies, our results help to establish a multifaceted understanding
of brain cell diversity. Targeted studies of individual cell types, taking
advantage of the transcriptional and epigenetic signatures described
here, will define their functional roles and significance in the context
of neural circuits and behaviour. Integrative analyses will be essential
to make progress towards understanding the organizing principles
of cell types in the brain through their molecular genetic signatures.
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Methods

Tissue collection and isolation of cells or nuclei (RNA-seq at the
Allen Institute)

Thefollowing methods apply to the following transcriptomic datasets
generated at the Allen Institute: SCRNA SMART, scRNA10x v3 A, scRNA
10xv2 A, snRNA SMART, snRNA10x v3 A and snRNA10x v2 A.

Mouse breeding and husbandry. All procedures were carried out in
accordance with the Institutional Animal Care and Use Committee pro-
tocols at the Allen Institute for Brain Science. Mice were provided food
and water ad libitum and were maintained on a regular 12-h day/night
cycle at no more than five adult mice per cage. Ambient temperature
was set to 72 °F and relative humidity was set to 40%. Allrooms were on
12/12-hlight/dark cycle. For this study, we enriched for neurons by using
Snap25-IRES2-Cre mice* (MGI:J:220523) crossed to Ail4 (ref. *?) (MGI:
J:220523), which were maintained on the C57BL/6) background (RRID:
IMSR_JAX:000664). Mice were euthanized at 53-59 days of postnatal
age. Tissue was collected from both males and females (scCRNA SMART,
snRNA SMART, scRNA10xv3 Aand snRNA10xv2A), only males (sSCRNA
10xv2 A) or only females (SnRNA10x v3 A).

Single-cell isolation. We isolated single cells by adapting previous-
ly described procedures®*?. The brain was dissected, submerged in
artificial cerebrospinal fluid (ACSF)?, embedded in 2% agarose, and
sliced into 250-pm (SMART-Seq) or 350-um (10x Genomics) coronal
sections on a Compresstome (Precisionary Instruments). The Allen
Mouse Brain Common Coordinate Framework version 3 (CCFv3; RRID:
SCR_002978)** ontology was used to define the MOp for dissections
(Extended Data Fig. 1b).

For SMART-Seq, the MOp was microdissected from the slices and
dissociated into single cells with 1mg/mlpronase (P6911-1G, Sigma) and
processed as previously described®. For 10x Genomiics, tissue pieces
were digested with 30 U/ml papain (PAP2, Worthington) in ACSF for
30 min at 30 °C. Enzymatic digestion was quenched by exchanging
the papain solution three times with quenching buffer (ACSF with 1%
FBS and 0.2% BSA). The tissue pieces in the quenching buffer were
triturated through a fire-polished pipette with a 600-um diameter
opening approximately 20 times. The solution was allowed to settle
and supernatant containing single cells was transferred to anew tube.
Fresh quenching buffer was added to the settled tissue pieces, and
trituration and supernatant transfer were repeated using 300-pum and
150-um fire-polished pipettes. The single-cell suspension was passed
through a70-pum filterintoa15-mlconical tube with 500 pl of high BSA
buffer (ACSF with1% FBS and 1% BSA) at the bottom to help cushion the
cells during centrifugation at 100gin a swinging bucket centrifuge for
10 min. The supernatant was discarded, and the cell pellet was resus-
pended in a quenching buffer.

All cellswere collected by fluorescence-activated cell sorting (FACS;
BD Aria ll; RRID: SCR_018091) using a 130-um nozzle. Cells were pre-
pared for sorting by passing the suspension through a 70-um filter
and adding DAPI (to the final concentration of 2 ng/ml). The sorting
strategy was as previously described?®, with most cells collected using
the tdTomato-positive label. For SMART-Seq, single cells were sorted
intoindividual wells of eight-well PCR strips containing lysis buffer from
the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (634894,
Takara) with RNase inhibitor (0.17 U/pl), immediately frozen on dry
ice and stored at —80 °C. For 10x Genomics, 30,000 cells were sorted
within 10 mininto a tube containing 500 pl of quenching buffer. Each
aliquot of 30,000 sorted cells was gently layered on top of 200 pl of
high BSA buffer and immediately centrifuged at 230g for 10 minin a
swinging bucket centrifuge. The supernatant was removed and 35 pl
of buffer wasleft behind, in which the cell pellet was resuspended. The
cell concentration was quantified and immediately loaded onto the
10x Genomics Chromium controller.

Tissue collection and nucleiisolation (RNA-seq at the Broad
Institute)

These methods apply to the snRNA 10x v3 B dataset, generated at the
Broad Institute.

Animal housing. Mice were group housed with a12-h light/dark sched-
uleand allowed to acclimate to their housing environment for 2 weeks
after arrival. Ambient temperature was set to 70 + 2 °F and relative
humidity was set to 40 +10%. All rooms are on 12/12-h light/dark cy-
cle. All procedures involving animals at the Massachusetts Institute
of Technology were conducted in accordance with the US National
Institutes of Health Guide for the Care and Use of Laboratory Animals
under protocol number 1115-111-18 and approved by the Massachusetts
Institute of Technology Committee on Animal Care. All procedures
involving animals at the Broad Institute were conducted inaccordance
withthe US National Institutes of Health Guide for the Care and Use of
Laboratory Animals under protocol number 0120-09-16. Samples were
collected from both male and female mice.

Brain preparation before 10x nuclei sequencing. At 60 days of age,
C57BL/6) mice were anaesthetized by administration of isofluraneina
gas chamber flowing 3% isoflurane for 1 min. Anaesthesia was confirmed
by checking for a negative tail pinch response. Mice were moved to a
dissection tray and anaesthesia was prolonged viaanose cone flowing
3% isoflurane for the duration of the procedure. Transcardial perfu-
sions were performed with ice-cold pH 7.4 HEPES buffer containing
110 mM NaCl, 10 mM HEPES, 25 mM glucose, 75 mM sucrose, 7.5 mM
MgCl,and 2.5 mMKCI to remove blood from the brain and other organs
sampled. The brain was removed immediately and frozen for 3 minin
liquid nitrogen vapour and moved to -80 °C for long-term storage. A
detailed protocol is available at protocols.io®.

Generation of MOp nuclei profiles. Frozen mouse brains were securely
mounted by the cerebellum onto cryostat chucks with OCT embedding
compound suchthatthe entire anterior half, including the MOp, was left
exposed and thermally unperturbed. Dissection of 500-pm anterior—
posterior spans of the MOp (Extended Data Fig. 1c) was performed by
handinthe cryostatusing an ophthalmic microscalpel (P-715, Feather
safety Razor) precooled to -20 °C and donning 4 x surgical loupes.
Each excised tissue dissectate was placed into a precooled 0.25-ml
PCR tube using precooled forceps and stored at -80 °C. To assess dis-
section accuracy, 10-um coronal sections were taken at each 500-pm
anterior—posterior dissection junction and imaged following Nissl
staining. Nuclei were extracted from these frozen tissue dissectates
using gentle, detergent-based dissociation, according to a protocol*
adapted from one generously provided by the McCarroll laboratory,
and loaded into the 10x Chromium v3 system. Reverse transcription
andlibrary generation were performed according to the manufacturer’s
protocol.

This10x v3 snRNA-seq protocol resulted ina higher number of genes
recovered than other snRNA-seq methods. We believe that there are
threereasons for this, and that the summation of benefitsimparted by
the combination of these accounts for the outcome.

First, mouse brains were perfused with asolution emulating ACSF and
thenrapidly frozen over liquid nitrogen vapourin suchaway that RNA
integrity was highly preserved. The resulting bioanalyzer RIN scores
of the starting brain tissues were routinely 9.8. Storage of the brains
before dissection was at -80 °Cin the presence of a hydration sink of 1
mlof OCT compound pre-frozeninto the bottom of a 5-mlstorage tube.
This prevents sublimation and subsequent desiccation-dependent
RNA fragmentation.

Second, we performed expeditious sample processing. We have a
well-trained group of technicians who processed the mouse brain (as
above), and then perform the dissociation, FACS and 10x processing
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(as below) in one continuous protocol without pauses. For example,
eachmouse was perfused and ready for dissection within minutes (10
min), and we limited our sample size to six mice so that no sample was
waiting to move through the process.

Third, the frozen tissue snRNA-seq protocol incorporates two main
features that we believe are important to quality because they prevent
the nucleifrom ‘leaking’ valuable signal and simultaneously contami-
nating the barcoded nuclei mixture with exogenous RNA signal. The
first feature wasaverylow level of centrifugation, which we have found
to cause both loss of signal and increased exogenous signal. The second
feature was theinclusion of an excipient reagent, BASF Kollidon VA-64,
as per the McCarroll laboratory protocol*.

Tissue collection and isolation of nuclei for epigenomic samples
The following methods apply to the snmC-seq2 and snATAC-seq data-
sets generated at the Salk Institute and the University of California,
San Diego.

Tissue preparation for nuclei production. Procedures involving
animals at the Salk Institute were conducted in accordance with the
US National Institutes of Health Guide for the Care and Use of Labora-
tory Animals under protocol number 18-00006 and approved by the
Institutional Animal Care and Use Committee. Male C57BL/6J mice
were purchased fromJackson laboratories at 8 weeks of age and main-
tained in the Salk animal barrier facility on 12-h dark/light cycles with
controlled temperature (20-22 °C) and humidity (30-70%), and food
ad libitum for 1 week before dissection.

Brains were extracted from 56 to 63-day-old mice and immediately
sectioned into 0.6-mm coronal sections, starting at the frontal pole,
inice-cold dissection media®. The MOp was dissected from slices two
to five along the anterior-posterior axis according to the Allen Brain
reference Atlas (Extended Data Fig. 1d). Slices were kept in ice-cold
dissection media during dissection and immediately frozenindryice
for subsequent pooling and nuclei production. For nuclei isolation,
dissected regions of the MOp from 15 to 23 mice were pooled for each
biological replicate, and two replicates were processed for eachregion.
Nuclei were isolated by flow cytometry as described in previous stud-
ies®!. In brief, nuclei were produced by homogenization in sucrose
buffer as previously described’, and the nuclei pellet produced was
divided into two aliquots. One aliquot underwent sucrose gradient
purification and NeuN labelling (snmC-seq2), and the second aliquot
went directly to tagmentation (SnATAC-seq).

Bisulfite conversion and library preparation for snomC-seq2. Detailed
methods for bisulfite conversion and library preparation are previously
described for snmC-seq2 (ref.™*), and the protocol is available on pro-
tocols.io*”. The snmC-seq2 libraries were sequenced using an lllumina
Novaseq 6000 instrument (RRID: SCR_016387) with S4 flowcells and
150-bp paired-end mode.

snATAC-seq data generation. Combinatorial barcoding snATAC-seq
was performed as previously described®®*8. Isolated brain nuclei were
pelleted with a swinging bucket centrifuge (500g for 5 min at 4 °C;
5920R, Eppendorf). Nuclei pellets were resuspended in1mlnuclei per-
meabilization buffer (5% BSA, 0.2% IGEPAL-CA630,1 mM dithiothreitol
and cOmplete, EDTA-free protease inhibitor cocktail (Roche) in PBS)
and pelleted again (500g for 5 min at 4 °C; 5920R, Eppendorf; RRID:
SCR_018092). Nuclei were resuspended in 500 pl high-salt tagmenta-
tionbuffer (36.3 mM Tris-acetate (pH 7.8), 72.6 mM potassium-acetate,
11 mM Mg-acetate and 17.6% DMF) and counted using a haemocytom-
eter. Concentration was adjusted to 4,500 nuclei per 9 pul, and 4,500 nu-
cleiweredispensedinto each well of a 96-well plate. For tagmentation,
1pulofbarcoded TnStransposomes*® were added using BenchSmart 96
(Mettler Toledo; RRID: SCR_018093), mixed five times and incubated for
60 minat37 °Cwithshaking (500 r.p.m.). Toinhibit the Tn5 reaction, 10

plof 40 mM EDTA was added to each well with BenchSmart 96 (Mettler
Toledo) and the plate was incubated at 37 °C for 15 min with shaking
(500r.p.m.). Next, 20 pl 2x sort buffer (2% BSA and 2 mM EDTA in PBS)
were added using BenchSmart 96 (Mettler Toledo). All wells were com-
bined into a FACS tube and stained with 3 pM Draq7 (Cell Signaling).
UsingaSH800 (Sony), 40 nuclei were sorted per wellinto eight 96-well
plates (atotal of 768 wells) containing 10.5 pl EB (25 pmol primeri7, 25
pmol primer i5 and 200 ng BSA (Sigma)). Preparation of sort plates
and all downstream pipetting steps were performed on a Biomeki7
Automated Workstation (Beckman Coulter; RRID: SCR_018094). After
the addition of 1ul 0.2% SDS, samples were incubated at 55 °C for 7 min
with shaking (500 r.p.m.). Triton-X (12.5%; 1 ul) was added to each well
to quench the SDS. Next, 12.5 ul NEBNext High-Fidelity 2x PCR Master
Mix (NEB) was added and samples were PCR-amplified (72 °C for 5min,
98 °Cfor30s(98 °Cfor10s,63 °Cfor30sand72°Cor60s)x12cycles,
held at12 °C). After PCR, all wells were combined. Libraries were puri-
fied according to the MinElute PCR Purification Kit manual (Qiagen)
using a vacuum manifold (QIAvac 24 plus, Qiagen) and size selection
was performed with SPRI Beads (0.55x and 1.5x; Beckmann Coulter).
Libraries were purified one more time with SPRIBeads (1.5%, Beckmann
Coulter). Libraries were quantified using a Qubit fluorimeter (Life Tech-
nologies; RRID: SCR_018095), and the nucleosomal pattern was verified
using a Tapestation (High Sensitivity D1000, Agilent). The library was
sequenced on a HiSeq2500 sequencer (Illumina; RRID: SCR_016383)
using custom sequencing primers, 25% spike-in library and the follow-
ing read lengths: 50 + 43 +37 + 50 (Read1+Index1 + Index2 + Read2)".

Genomic library preparation, sequencing and data processing
scRNA-seq and snRNA-seq (Allen Institute). For SMART-Seq process-
ing, we performed the procedures with positive and negative controls
as previously described®. The SMART-Seq v4 Ultra Low Input RNA Kit
for Sequencing (634894, Takara) was used to reverse transcribe poly(A)
RNA and amplify full-length cDNA. Samples were amplified for 18 cy-
clesin eight-well strips, in sets of 12-24 strips at a time. All samples
proceeded through Nextera XT DNA Library Preparation (FC-131-1096,
Illumina) using Nextera XT Index Kit V2 (FC-131-2001, lllumina) and
a custom index set (Integrated DNA Technologies). Nextera XT DNA
Library preparation was performed according to the manufacturer’s
instructions, withamodification toreduce the volumes of all reagents
and cDNAinput to 0.4x or 0.5x of the original protocol.

For 10x v2 processing, we used the Chromium Single Cell 3’ Rea-
gent Kit v2 (120237, 10x Genomics). We followed the manufacturer’s
instructions for cell capture, barcoding, reverse transcription, cDNA
amplificationand library construction. We targeted asequencing depth
of 60,000 reads per cell.

For 10x v3 processing, we used the Chromium Single Cell 3’ Rea-
gentKitv3(1000075,10x Genomics). We followed the manufacturer’s
instructions for cell capture, barcoding, reverse transcription, cDNA
amplification and library construction. We targeted asequencing depth
0f 120,000 reads per cell.

RNA-seq data processing and quality control (Allen Institute).
Processing of SMART-Seq v4 libraries was performed as previously
described’. Briefly, libraries were sequenced on an Illumina HiSeq2500
platform (paired-end with read lengths of 50 bp), and lllumina sequenc-
ing reads were aligned to GRCm38.p3 (mm10) using a RefSeq annota-
tion gff file retrieved from the NCBI on 18 January 2016 (https://www.
ncbi.nlm.nih.gov/genome/annotation_euk/all/). Sequence alignment
was performed using STAR v2.5.3*, PCR duplicates were masked and
removed using STAR option ‘bamRemoveDuplicates’. Only uniquely
aligned reads were used for gene quantification. Gene counts were com-
puted using the R GenomicAlignments package (RRID: SCR_018096)*°
and the summarizeOverlaps functionin ‘IntersectionNotEmpty’ mode
forexonicand intronic regions separately. For the SMART-Seq v4 data-
set, we only used exonic regions for gene quantification. Cells that
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met any one of the following criteria were removed: <100,000 total
reads, <1,000 detected genes (CPM > 0), <75% of reads aligned to the
genome or CG dinucleotide odds ratio > 0.5. Cells were classified into
broad classes of excitatory, inhibitory and non-neuronal based on
known markers, and cells with ambiguous identities were removed
asdoublets®.

10xv2and10xv3libraries were sequenced onIlluminaNovaSeq 6000
(RRID:SCR_016387), and sequencing reads were aligned to the mouse
pre-mRNA reference transcriptome (mm10) using the 10x Genomics
CellRanger pipeline (version 3.0.0; RRID: SCR_017344) with default
parameters. Cells were classified into broad classes of excitatory, inhibi-
tory and non-neuronal based on known markers. Low-quality cells
that fit the following criteria were filtered from clustering analysis.
Different filtering criteria were used for neurons and non-neuronal
cells as neurons are bigger than non-neuronal cells and contain more
transcripts. For scRNA datasets, we excluded neurons with fewer than
2,000 detected genes and non-neuronal cells with fewer than 1,000
detected genes; for snRNA datasets, we excluded neurons with fewer
than1,000 detected genes and non-neuronal cells with fewer than 500
detected genes. Doublets were identified using amodified version of
the DoubletFinder algorithm® and removed when the doublet score
was greater than 0.3.

Chromatin accessibility (snATAC-seq) data pre-processing (UCSD).
Paired-end sequencing reads were demultiplexed and aligned to the
mml0 reference genome using bwa*. After alignment, we converted
paired-end reads into fragments and for each fragment, we checked
the following attributes: (1) mapping quality score MAPQ; (2) whether
two ends are appropriately paired according to the alignment flag in-
formation; and (3) fragment length. We only keep the properly paired
fragments whose MAPQ (-min-mapq) is greater than 30 with frag-
ment length less than 1,000 bp (-max-flen). Because the reads have
beensorted based onthe names, fragments belonging to the same cell
(orbarcode) are naturally grouped together, which allows for remov-
ing PCR duplicates. After alignment and filtration, we used Snaptools
(https://github.com/r3fang/SnapTools; RRID: SCR_018097) to generate
asnap-format file that contains metadata, cell-by-bin count matrices
of various resolutions and cell-by-peak count matrices.

Filtering cells by transcription start site enrichment and unique
fragments. The method for calculating enrichment at the tran-
scription start site (TSS) was adapted from a previously described
method®. TSS positions were obtained from the GENCODE database
(RRID: SCR_014966). Briefly, Tn5-corrected insertions were aggre-
gated +2,000 bp relative (TSS strand-corrected) to each unique TSS
genome-wide. Then, this profile was normalized to the mean acces-
sibility £1,900-2,000 bp from the TSS and smoothed every 11bp. The
maximum of the smoothed profile was taken as the TSS enrichment. We
excluded any single cells that had fewer than1,000 unique fragments
oraTSS enrichment of less than 10 for any sample sets.

Doublet removal. After filtering out low-quality nuclei, we used Scrub-
let (RRID: SCR_018098)** to remove potential doublets for every sam-
ple set. Cell-by-peak count matrices were used as input, with default
parameters.

Preprocessing of the DNA methylation (snmC-seq2) data
(SalkInstitute)

Mapping and feature count pipeline for shmC-seq2. We imple-
mented a versatile mapping pipeline (cemba-data.rtfd.io) for all the
single-cell methylome-based technologies developed by our group”*>°.
Themainsteps of this pipeline included: (1) demultiplexing FASTQ files
into single-cell files; (2) reads-level quality control; (3) mapping; (4)
BAM file processing and quality control; and (5) final molecular pro-
file generation. The details of the five steps for snmC-seq2 have been

previously described™. We mapped all the reads onto the mouse mm10
genome. After mapping, we calculated the methyl-cytosine counts and
the total cytosine countsin two sets of genome regions for each cell: the
non-overlapping100-kb bins tiling the mm10 genome, whichwas used
for methylation-based clustering analysis, and gene body regions + 2 kb,
which was used for cluster annotation and cross-modality integration.

Quality control and cell filtering. We filtered the cells based on five
quality metrics: (1) the rate of bisulfite non-conversion as estimated
by the rate of methylation at CCC positions (mCCC) <0.03 (the mCCC
ratereliably estimates the upper bound of the bisulfite non-conversion
rate®); (2) the overallmCGrate > 0.5; (3) the overallmCHrate < 0.2; (4)
thetotalfinalreads (combining R1and R2) >500,000; and (5) the total
mapping rate (using Bismark®)>0.5.

Preprocessing and clustering. The clustering steps of snmC-seq2
data were previously described®. In brief, we calculated the poste-
rior mCH and mCG rate based on beta-binomial distribution for the
non-overlapping 100-kb bins matrix. We then selected the top 3,000
highly variable features to perform principal components analysis
(PCA) and find dominant principal components for mCH and mCG
separately. We concatenate principal components from both methyla-
tion types together to construct a k-nearest neighbour (KNN) graph,
and ran the Leiden community detection algorithm*® repeatedly to get
the consensus clustering results. The stopping criteria of clustering
considered the number of marker genes, the accuracy of the repro-
ducible supervised model based on the cluster assignments and the
minimum cluster size. We performed the clusteringintwoiterationsto
get the major types and fine-grained types for comparison with other
modalities in further integration.

Computational analysis

Estimation of library size. For estimate of library size, see Extended
DataFig. le. For each dataset, we estimated the total library size, that
is, the number of unique RNA or DNA fragments (F), based on the rate
of duplicate sequence reads. The number of unique mapped reads is
Ninique = F(1=Bin[OIS, I/F) =F[1-(1- 1/F)%], where Sis the total num-
ber of sequenced reads. Using this equation, we numerically solved
for Fusing the median values of S, Nn;que-

Transcriptome analysis
Clustering individual datasets. For transcriptomic analysis, see Fig. 1.
Clustering for each scRNA-seqand snRNA-seq dataset was performed
independently using the R package scrattch.hicat® (RRID: SCR_018099;
available at https://github.com/AllenInstitute/scrattch.hicat). This
package supports iterative clustering by making successively finer
splits while ensuring all pairs of clusters, even at the finest level, are
separable by stringent differential gene expression criteria®. For the
scRNA10x datasets, we used q1.th=0.4, q.diff.th=0.7,de.score.th =150
andmin.cells=10. For the snRNA10x datasets, we used q1.th=0.3, q.diff.
th=0.7, de.score.th=100 and min.cells = 10. For the scRNA SMART
datasets, we used ql.th=0.5, q.diff.th=0.7, de.score.th =150 and min.
cells =4. For the snRNA SMART dataset, we used ql.th = 0.4, q.diff.
th=0.7, de.score.th =100 and min.cells = 4. We further performed
consensus clustering by repeatingiterative clustering on asubsample
of 80% of cells, resampled 100 times, followed by final clustering based
ontheco-clustering probability matrix. Using this procedure, we could
fine-tune cluster boundaries as well as assess cluster uncertainty.
Next, we removed low-quality and doublet-driven clusters. We per-
formed differential gene expression analysis between every pair of
clusters within each subclass. If any cluster had <2 upregulated genes
(fold change >2,FDR < 0.01, with additional dataset-specific parameters
listed in the previous paragraph) than another cluster, and had a sub-
stantially lower average number of detected genes per cell, we flagged
the cluster as low quality and removed it from further analysis. Next,
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if the upregulated genes between any two clusters within a subclass
were predominantly marker genes for a different subclass, and one
of the clusters had a significantly higher average of genes detected
per cell and UMI count, we flagged the cluster as a potential doublet
cluster and removed it from further analysis. These criterialed to the
exclusion of 8.3% of all cells, the vast majority of which came from the
two 10x v3 datasets (sCRNA 10x v3 A and snRNA 10x v3 B). While the
10x v3 platform boosts the gene detection for good cells, it does the
same to damaged cells or debris, leading to an increased number of
clusters that were excluded for these datasets.

Joint clustering of multiple transcriptome datasets. To provide a
consensus cell-type taxonomy across all transcriptomic datasets, we
developed anintegrative clustering analysis across multiple data mo-
dalities. This procedure is available via the harmonize function of the
scrattch.hicat package. Unlike Seurat/CCA¥, which aims to find aligned
common reduced dimensions across multiple datasets, this method
directly builds acommon adjacency graph using the cells fromall data-
sets, and then applies the Louvain community detection algorithm®®, We
extended the cluster merging algorithmin the scrattch.hicat package
to ensure that all clusters can be separated by conserved differentially
expressed genes across platforms. Thei_harmonize function, similar to
theiter_clust functioninthesingle-dataset clustering pipeline, applies
integrative clustering across datasets iteratively while ensuring that all
theclusters at eachiteration are separable by conserved differentially
expressed genes.

To build acommon adjacency matrix incorporating samples from
allthe datasets, we first chose a subset of datasets that we used as ‘ref-
erence datasets’. For this study, we used the 10x v2 single-cell dataset
fromthe Allen Institute (sScRNA10x v2 A) and the 10x v3 single-nucleus
dataset from the Broad Institute (sSnRNA10x v3 B) as the reference data-
sets, as both are large datasets that provide comprehensive cell-type
coverage and relatively sensitive gene detection.

The key steps of the pipeline are outlined: (1) perform single-dataset
clustering (Methods described above). (2) Select the anchor cells for
eachreference dataset. For each reference dataset (scRNA10xv2 A or
snRNA 10x v3 B), we randomly sampled up to max (100 >.000

’ no.ofclusters
anchor cells per cluster to normalize coverage for each cell type. This

is the only step that uses the dataset-specific clustering information.
(3) Select highly variable genes. Highly variable gene selection and
dimensionality reduction by PCA were performed using the scrattch.
hicat package. Weremoved principal components with aPearson cor-
relation coefficient of more than 0.7 with 10g,(Ngeps). This step was
implemented to mitigate the effect of cell or nucleus quality on gene
expression variability, and to select only biologically relevant principal
components. For each remaining principal component, Z-scores were
calculated for geneloadings. The top 100 genes withan absolute Z-score
greater than 2 were selected as highly variable genes. The highly vari-
able genes from each reference dataset were combined. (4) Compute
KNNs. For each cellineach query dataset, we computed its KNNs (k=15)
amonganchor cellsin each reference dataset (sSCRNA10x v2 A or snRNA
10xv3B), based onthe highly variable genes selected above. The RANN
package was used to compute KNN based on the Euclidean distance
whenthe query andreference dataset was the same. To compute near-
est neighbours across datasets, we used correlation as a similarity
metric. (5) Compute theJaccard similarity. For every pair of cells from
all datasets, we computed their Jaccard similarity, defined as the ratio
of the number of shared KNNs (among all anchors cells from all the
reference datasets) divided by the number of combined KNNs. (6)
Perform Louvain clustering. (7) Merge clusters. To ensure that every
pair of clusters are separable by conserved differentially expressed
genes across all datasets, for each cluster, we first identified the top
three most similar clusters. For each pair of such closely related clusters,
we computed the differentially expressed genes in each dataset. We
focus on the conserved differentially expressed genes that are

significantin atleast one dataset, while also having more than twofold
changeinthe samedirectioninall but one datasets. We then computed
the overall statistical significance based on such conserved differen-
tially expressed genes for each dataset independently. If any of the
datasets passed our differentially expressed gene criteria described
in the ‘clustering’ section, the pair of clusters remained separated;
otherwise they were merged. Differentially expressed genes were rec-
omputed for the merged clusters, and the process was repeated until
all clusters were separable by the conserved differentially expressed
genes criteria. If one cluster had fewer than the minimal number of
cellsinadataset (4 cells for SMART-Seq and 10 cells for 10x), then this
dataset was not used for differentially expressed gene computation
for all pairs involving the given cluster. This step allows detection of
unique clusters absent in some platforms. (8) Iterative clustering.
Repeat steps 1-6 for cells within each cluster to gain finer-resolution
clusters until no more clusters can be found. (9) Final compilation and
merging of clusters. Concatenate all the clusters fromall of the iterative
clustering steps and perform the final merging as described in step 6.

Marker gene selection. For each pair of clusters, we computed the
conserved differentially expressed genes, that is, those which are sig-
nificantly differentially expressedin atleast one dataset, with a twofold
or more changeinexpressioninthesamedirectionamong 70% of data-
sets. To allow computation of differentially expressed genes involving
cell types only present in a subset of datasets, only the datasets with
enough cells (based on min.cells parameter) for both cell types under
comparisonwere used. We selected the top 50 genesin each direction.
After pooling genes from all pairwise comparisons, we identified a total
of 3,792 marker genes (Supplementary Table 6).

Imputation. To facilitate direct comparison, we projected gene expres-
sion of all datasets to the space of agiven reference dataset. Todo that,
we leveraged the KNN matrices computed during the iterative joint
clustering step to adjust the expression values for systematic differ-
encesbetween datasets. During each iteration of the joint clustering, for
cellsineach dataset, we used the average gene expression of their KNNs
among the anchor cells from the reference dataset as the adjusted ex-
pressioninthe reference space. At the top-level clustering, weimputed
the expression for all genes. For each subsequent iteration, we only
imputed the expression of the high-variance genes and the conserved
differentially expressed genes for the clusters defined in that iteration.
We used this iterative approach for imputation because the nearest
neighbours based on the genes chosen at the top level may not reflect
the distinctionbetween the finer types, and the imputed values for the
differentially expressed genes that define the finer types consequently
are not accurate based on these nearest neighbours. Therefore, we
deferred imputation of the differentially expressed genes between the
finer typestotheiteration whenthese types were defined. This method
is provided in the impute_knn_global function in the scrattch.hicat
package®. We imputed the gene expression matrix for both reference
datasets used in the integrative clustering.

Building a cell-type taxonomy tree. We first computed the average
adjusted expression of marker genes for each cluster. This average
was computed using each of the two reference datasets (sSCRNA 10x
v2Aand snRNA10x v3 B). Then, the two matrices were concatenated.
We constructed a hierarchy (tree) using the build_dend_harmonize
functionin the scrattch.hicat package®.

Dimensionality reduction by UMAP. We performed PCA based on
imputed gene expression matrices of 3,792 marker genes using the 10x
single-nucleus dataset from the Broad Institute as the reference, and
selected the top 50 principal components (93% variance explained).
We removed principal components with Pearson correlation coeffi-
cient>0.6 with thelog,(Nges) to reduce bias related to the number of



detected genes. UMAP was used to embed the cellsin two dimensions
with parameters nn.neighbours =25and md = 0.3 (ref. *°).

MetaNeighbor analysis

For the MetaNeighbor analysis, see Fig.1g. To quantify replicability of
clusters across the seven transcriptomic datasets, we applied amodi-
fied version of unsupervised MetaNeighbor (RRID: SCR_016727)*.
MetaNeighbor uses a neighbour voting algorithm and a cross-dataset
validation scheme to quantify cluster similarity across multiple data-
sets. It requires a set of unnormalized datasets, a set of cluster labels
and a set of highly variable genes. We used the raw count data for all
cells passing the quality control criteria for the seven single-cell tran-
scriptomic datasets, as well as the labels obtained through independ-
ent clustering (Supplementary Table 5). We used the variableGenes
procedure in MetaNeighbor to select 310 highly variable genes that
were detected as highly variable across all datasets.

We defined replicable clusters in atwo-step procedure: first, we quan-
tified the similarity between clusters across datasets, then we extracted
groups of highly similar clusters, or ‘meta-clusters’. We used the Meta-
NeighborUS function to obtainaninitial similarity matrix between clus-
ters. By default, cluster similarity is quantified as a one-vs-all AUROC:
givenatrainingcluster (inone dataset), we asked how similar cells from
atest cluster (in another dataset) were to training cells, compared to all
othercellsin the test dataset. To make cluster matching more stringent,
we transformed the one-vs-all AUROC matrix into a one-vs-best AUROC
matrix: instead of ranking test cellsamongall cells from the test dataset,
we only compared them to cells from the best-matching cluster. This
modification ensured that only the best match had an AUROC > 0.5,
facilitating identification of reciprocal best hits. For interpretability
and computational efficiency, we adopted the following convention:
the best-matching AUROC of a cluster was obtained by comparing
it to the second best-matching cluster, the second best AUROC of a
cluster was obtained by computing 1 - AUROC of the best-matching
cluster, and all other clusters obtained an AUROC of 0, as we were only
interested in finding best matches. To extract meta-clusters, weinter-
preted the one-vs-best AUROC as a graph where nodes are clusters
and edges connect nodes if they are reciprocal best hits. We define
meta-clusters as connected components in this graph. We can obtain
more robust meta-clusters by requiring that best hits exceed some
AUROC threshold. In practice, we noted that one-vs-best AUROC > 0.7
offered a good balance between the number of meta-clusters and
reproducibility strength.

For scalability, we modified MetaNeighbor in the following ways. In
the MetaNeighborUS function, we removed the rank standardization of
the cell-cell similarity network (by setting the parameter fast_version
to TRUE) and the node degree normalization of the neighbour voting,
enabling analytical simplifications of the neighbour voting procedure.
The variableGenes procedure was applied toarandom subset of 50,000
cells for datasets exceeding that size.

MetaNeighbor analysis further allowed us to examine the consist-
ency of computational clustering procedures (Fig. 1h). We ran three
widely used single-cell analysis packages® to generate afine-grained
clustering of each dataset. These cluster analyses were not optimized or
manually curated; instead, we used ‘off-the-shelf’ computational pro-
cedurestotest the robustness of the results fromarelatively straight-
forward and automated analysis. These clusters are thus expected
to be less biologically meaningful and robust than more customized
procedures, such as our reference clustering thatincorporates analysis
of differential expressionto validate the biological reality of cell types.
Using the three off-the-shelf cluster analyses, we created a sequence
ofincreasingly coarse-grained clusterings by iteratively merging pairs
of clusters chosen to maximize the consistency across computational
methods (ARI-merging). Finally, at each level of resolution, we used
MetaNeighbor to calculate the number of clusters that were highly
replicable (AUROC > 0.7) across datasets. The result of this analysis

showed that fine partitions of the data with more than 30-50 clusters
have limited replicability.

Cluster analysis for shomC-seq2. For cluster analysis for snmC-seq2,
see Extended DataFig. 6a, b. We concatenated principal components
from both methylation types (CG and CH) together, and used these to
constructaKNN graph followed by Leiden community detection®®. We
repeated the cluster analysis several times to get consensus clustering
results. The stopping criteria of clustering considered the number of
marker genes, the accuracy of the reproducible supervised model
based on the cluster assignments and the minimum cluster size. We
performed the clustering in two iterations to get major types and
fine-grained cell types for comparison with other modalities in fur-
therintegration.

Two-dimensional embedding using ¢-distributed stochastic neigh-
bour embedding® (¢-SNE; perplexity = 30) was calculated based on
the top principal components using the implementation from the
scanpy package®®.

Cluster analysis for snATAC-seq. For cluster analysis for snATAC-seq,
see Extended Data Fig. 6¢, d. We used the snapATAC pipeline**toiden-
tify cell clusters with binarized cell-by-bin matrix in 5-kb resolution as
the input. Cell clusters were annotated to cell type by checking chro-
matin accessibility along the body of marker genes. Then, another
round of clustering was performed on medial ganglionic eminence
(MGE)-derived and caudal ganglionic eminence (CGE)-derived inhibi-
tory GABAergic interneurons, to identify sub-cell types.

Multimodality integration
For multimodality integration, see Fig. 2.

Computational data integration with LIGER. We used LIGER (RRID:
SCR_018100) tointegrate the single-cell transcriptomic and epigenom-
ic data as previously described®, with one modification. We used the
optimizeALS functionin the LIGER package to performjoint factoriza-
tion on all datasets except methylation (seven RNA datasets and one
ATAC dataset) to infer shared (W) and dataset-specific (V;) metagene
factors and cell factor loadings (H,). We then used the resulting Wto
calculate cell factor loadings (H,) for the methylation data using the
solveNNLS functionin the LIGER package. We found that this strategy
yielded better integration than jointly factorizing all eight datasets,
possibly because the inverse relationship and massive sizeimbalance
of datasets between methylation and all other datasets complicates
thelearning of shared metagenes. Our analysis used only the cells an-
notated by each data-generating group as passing quality control.
We did not perform any data imputation or smoothing, but simply
normalized and scaled the raw cell-by-gene count matrices fromeach
dataset using the normalize and scaleNotCenter functionsinthe LIGER
package. We next used the quantileAlignSNF function with default
settings to perform quantile normalization of cell factor matrices (H,)
from all eight datasets. Finally, we performed Louvain clustering on
the normalized cell factor matrices (H,) to obtain joint clusters. We
performed two rounds of integration and joint clustering; in the first
round, we separately integrated all neurons across datasets and all
gliaacross datasets. We then performed asecond round of integration
and clustering separately for each of the four neuronal subclasses:
excitatory IT neurons, excitatory non-IT neurons, MGE interneurons
and CGEinterneurons. We used k=40 factors for the non-neuron analy-
sis, k=30 for the first-round neuron analysis and k = 20 for all of the
second-round analyses.

Computational integration with SingleCellFusion. SingleCellFu-
sion* is designed to robustly integrate DNA methylation, ATAC-seq and/
or RNA-seq data. We applied SingleCellFusion iteratively to integrate
allneurons from eight datasets (Supplementary Table 1) and jointly call
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cell clusters. To integrate both the broad and fine-grained cell types,
we performed three rounds of integration. For every cell cluster gener-
atedinthe previousround, it was further splitinto smaller clusters by
reapplying SCF on cells in that cluster only. In the first round, we ran
SCFonallneurons from 8 datasets and got 10 broad neuronal clusters.
Rounds two and three generates 29 clusters and 56 more fine-grained
clusters, respectively (Supplementary Table 3).

The procedure comprised four major steps: preprocessing,
within-modality smoothing, cross-modality imputation, and clus-
tering and visualization. (1) For the preprocessing step, we defined a
gene-by-cell feature matrix for each dataset. Droplet-based RNA-seq
features (10x) were log;,(CPM + 1) normalized; full-length RNA-seq
(SMART-Seq) features were log,,(TPM + 1) normalized. snATAC-seq
data were represented by read counts within the gene body, normal-
ized by log,,(RPM +1), where CPM stands for counts per million reads
mapped (counts normalized), TPM stands for transcripts per million
reads mapped (Iength normalized) and RPM stands for reads per million
reads mapped (length normalized), respectively. DNA methylation data
arerepresented by the mean gene body mCH level, normalized by the
global (genome-wide) mean mCH level for each cell. For each dataset,
we only used high-quality cells (passed quality control) and highly
variable genes (n=4,000-6,300) for further analysis. To select highly
variable genes, for RNA-seq and ATAC-seq datasets, we first removed
genesthat were expressed in fewer than 1% of cells. We then divided the
remaining genesinto 10 bins according to their mean expression across
cells (CPM). For each bin, except for the one with the most expression,
weselected the top 30% of genes with the most expression dispersion
(variance/mean) as the highly variable genes. For the DNA methylation
dataset, wefirst selected genes that had more than 20 cytosine cover-
ageinmore than 95% of cells, then divided the remaining genesinto 10
bins according to their mean normalized mCH level - raw mCH level
normalized by the global mCH for each cell. For each bin, we selected
the top 30% of genes with the most variance as the highly variable genes.
(2) For the within-modality smoothing step, to reduce the sparsity and
noise of feature matrices, we shared information among cells with
similar profiles using data diffusion. The procedure is adapted from
ref. ® and described in detail in ref. *°. Here we exactly followed ref. *°
with [ndim=50, k=30, ka=5]forall datasets,and [P=0.7] for RNA-seq
datasets, [P=0.9]for the DNA methylation datasetand [P=0.1] for the
ATAC-seq dataset. (3) For the cross-modality imputation by restricted
k-partners (RKP) step, to integrate all eight datasets, we impute the
scRNA 10x v2 A gene features for cells in all seven other datasets. The
imputation was done pairwise between the scRNA 10x v2 A dataset
and each of the other datasets. For each pairwise imputation, we fol-
lowed the procedure described in ref. *° with 20 RKP and relaxation
parameter 3 [k =20, z=3]. Instead of using Euclidean distance in a
low-dimensional space, we used the (flipped) Spearman correlation
coefficient across genes that were highly variable in both datasets as
the distance metric between cells in two different modalities. (4) For
the clustering and visualization step, we started from a cell-by-feature
matrix, where cells included all cells from eight datasets and features
were highly variable genes of the sScRNA 10x v2 A dataset. We reduced
the dimensionality of features into the top 50 principal components.
Next, we performed UMAP embedding*® on the principal component
matrix (n_neighbours =60, min_dist=0.5). Finally, we performed Leiden
clustering on the KNN graph (symmetrized, unweighted) generated
fromthe final principal component matrix (Euclidean distance, k=30,
resolution=0.1).

For Extended Data Fig. 7e, we created the embedding of the cluster
centroids usingtheimputed scRNA10x v2 A gene features (log;,(CPM
+1)) for all cells from the eight different datasets generated from Sin-
gleCellFusion integration. Clusters are defined by individual dataset
clusterings and by the joint clustering with SingleCellFusion. Cluster
centroids were calculated by the mean imputed scRNA 10x v2 A gene
profilesacross cells. After getting a gene-by-cluster matrix, we applied

PCA toreduceto 50 feature dimensions, followed by applyinga UMAP
embedding with min_dist=0.7 and n_neighbours =10.

For Fig. 2e, to compare molecular signals across data modalities,
all signals were normalized to [0, 1]. This was achieved by first getting
molecular signals by dataset-specific normalization (step 1), followed
byalinear transformation (step 2). Instep 1, for SMART-Seq datasets, we
showlog,,(TPM +1); for 10x RNA-seq datasets, we show log,,(CPM +1);
forthe ATAC-seq dataset, we show log,,(RPM +1) normalized gene body
counts; and for DNA methylation, we show gene body mCH normalized
by global mCH level of each cell. For step 2, we applied a linear trans-
formation to map the range of the signal to [0, 1]. For datasets other
than DNA methylation, we applied the following formula:

X~ Xmin

Xnormalized = X -x
max min

where x is the dataset-specific gene-level signal for a cell, x,,;,and X,
aredefined as the bottom two percentile and the top two percentile of
x across all cells, respectively. For the DNA methylation dataset, we
applied the following formula:

X~ Xmin

Xnormalized =1~ o —x..’
max min

with which signals were stillmapped to [0, 1] but flipped—a high signal
onthe plot means alow level of DNA methylation. We did this to align
DNA methylation signals with gene expression and open chromatin
signals, because DNA methylationis a repressive marker of gene expres-
sion and negatively correlates with it. In these formulas, X;, and X,
are defined as the bottom 2 percentile and the top 50 percentile of x
acrossall cells, respectively.

For Fig. 2d, for each gene, cell-level signals were normalized the same
way as described in step 1of Fig. 2e. Cluster-level signals are the mean
cell-level signals across cellsin clusters. After getting gene-by-cluster
matrices this way, for non-DNA methylation datasets, the matrices
were further normalized by the maximum of each cluster (column);
for DNA methylation datasets, no further normalization was done, as
they were already normalized by cell.

For Extended DataFig. 7g, h, the heat maps show pairwise Spearman
correlation coefficients between the centroids of cells from each cell
type (SingleCellFusion) and each dataset, using the gene expression
levels (log;,(CPM +1); measured or imputed by SingleCellFusion) of
the scRNA 10x v2 A dataset as features. Centroid-level profiles were
computed as the average of cell-level profiles across cells from the same
cell type and the same dataset. The row and column orderings were
thesame, generated by a hierarchical clustering on the above-defined
centroid-level features with average linkage and Euclidean distance.
Extended Data Fig. 7g shows the correlations between broad-level
jointclusterings (10 subclasses; SingleCellFusion LO) (Supplementary
Table 8); Extended Data Fig. 7h shows those between fine-level joint
clusterings (56 clusters in total; not all are shown; SingleCellFusion
L2) (Supplementary Table 8) for four example broad-level subclasses
(MGE, CGE, L2/31T and L4/51T).

For the agreement metric in Extended Data Fig. 7c, we calculated
dataset agreement metrics as described in the LIGER paper?®. In brief,
we performed dimensionality reduction using either non-negative
matrix factorization (NMF; for LIGER) or PCA (for SingleCellFusion)
andbuiltaKNN graph for eachindividual dataset. Then, we builtaKNN
graphusing the joint latent space fromeither LIGER or SingleCellFusion
and calculated what fraction of the nearest neighbours fromindividual
datasets were still nearest neighbours in the joint space. This metric
assesses how well the jointlatent space preserves the structure of each
individual dataset. An agreement metric close to O indicates poor pres-
ervation of structure from individual datasets, while an agreement
metric close to 1ideally preserves the structure.



For the alignment metric in Extended Data Fig. 7d, we calculated
dataset alignment metrics as described in the LIGER? and Seurat™
papers, except that we first downsampled cells so that the cluster pro-
portions and the total number of cells were identical across all datasets.
Next, we built aKNN graph using the joint latent space from either
LIGER or SingleCellFusion and calculated what fraction of the near-
est neighbours around each point came from each dataset. We then
normalized the metric to be between O (no alignment) and 1 (perfect
mixing of datasets). This metric assesses how well the joint latent space
aligns the datasets. Note that maximizing alignment and maximizing
agreement are competing objectives. For example, it is possible to
trivially maximize alignment by randomly mixing cells fromall datasets
according to aspherical Gaussian distribution; conversely, one could
trivially maximize agreement by simply assigning non-overlapping
latent representations to all datasets. However, methods must bal-
ance these competing objectives to score highly on both alignment
and agreement metrics.

For Extended Data Fig. 7f, to get cluster-level gene signals, we first got
normalized cell-level signals the same way as step 1 of Fig. 2e, followed
by taking the mean cell-level signals across cells in clusters.

Analysis of enhancers

Epigenome cluster level. On the basis of the cell-cell integration in
Fig. 2, to have enough whole-genome coverage of each cell type, we
further merged the co-clustersinto a higher level toincrease the cover-
age of each cluster, which we termed as the epigenome cluster level.

DMR calling. For DMR calling in the snmC-seq2 data, we merged
single-cell ALLC files into the pseudo-bulk level for each cluster, and
then used the methylpy® DMRfind function to calculate mCG DMRs
acrossall clusters. The base call of each paired CpG site was added up be-
fore analysis. In brief, the methylpy function used a permutation-based
root mean square test of goodness-of-fit to identify differentially meth-
ylated sites simultaneously across all samples, and then merged the
differentially methylated sites within 250 bp into DMRs. Hypo-DMRs
and hyper-DMRs were then assigned to each sample by examining
the residue of observed counts from the expected counts. We also
filtered the DMRs by requiring that the maximum difference of mCG
rate between clusters was larger than 0.3.

snATAC peak calling. We called peaks according to the ENCODE
ATAC-seq pipeline (https://www.encodeproject.org/atac-seq/). For
every cell cluster, we combined all properly paired reads to generate
apseudo-bulk ATAC-seq dataset for individual biological replicates. In
addition, we generated two pseudo-replicates, each of whichincluded
half of the reads from each biological replicate. We called peaks inde-
pendently for each of these four datasets, as well as for a pool of the
datafrombothbiological replicates. Peak calling was performed on the
Tn5-corrected single-base insertions using MACS2¢ (RRID: SCR_013291)
with parameters: -shift —75-extsize 150-nomodel-call-summits—
SPMR-keep-dup all —q 0.01. We extended peak summits by 250 bp
on either side to a final width of 501 bp for merging and downstream
analysis. To generate a list of reproducible peaks, we kept peaks that
(1) were detected inthe pooled dataset and overlapped 50% or more of
the peaklength with a peakinbothindividual biological replicates, or
(2) were detected in the pooled dataset and overlapped 50% or more
ofthe peak length with a peakin both pseudo-replicates.

To account for differences in performance of MACS2 based on read
depthand/or the number of nucleiinindividual clusters, we converted
MACS2 peak scores (-log,,(g value)) to score per million (SPM)%* and
kept peaks with SPM >2. We only kept reproducible peaks on chromo-
somes 1-19 and both sex chromosomes, and filtered ENCODE mm10
blacklist regions® (http://mitra.stanford.edu/kundaje/akundaje/
release/blacklists/mm10-mouse/mm10.blacklist.bed.gz). Finally, since
snATAC-seq data arerelatively sparse, we selected only elements that

wereidentified as open chromatinin a significant fraction of the cells
in each cluster. To this end, we defined a set of background regions,
matching the number of peak regions for each cell type, by randomly
selecting regions from the genome while excluding accessible sites
fromthe ENCODE registry of cis-regulatory elements (https://screen.
encodeproject.org/). We calculated the fraction of nuclei for each cell
type that had ATAC fragments mapping to the background regions.
Next, we fitted a zero-inflated beta model and empirically identified
asignificance threshold of FDR < 0.01to filter potential false-positive
peaks. Peak regions with FDR<0.01in atleast one of the clusters were
included in the downstream analysis.

We used ‘bedtoolsintersect’ withthe ‘-wa-u’ parameter to calculate
DMR and ATAC peak overlaps® (RRID: SCR_006646).

Saturation analysis. To investigate the efficiency of regulatory ele-
ment identification in terms of cell number in the epigenomic data,
we did a saturation analysis using the two most abundant cell types:
theL2/31T and the L6 CT excitatory neurons. The total reads assigned
to these two cell types were comparable to bulk-seq. We subsampled
adifferent number of cells without replacement in each cluster three
times when we had enough cells, and used cells from each replicate
separately when possible. In the last group, we used all of the cells for
each celltype asamaximumreference. For methylome data, we called
DMRsbetween L2/31T and L6 CT withineach cellnumber group. Peaks
were called for each cell-type group.

REPTILE enhancer prediction. We performed enhancer prediction
using the REPTILE® algorithm. The REPTILE is arandom-forest-based
supervised method thatincorporates different sources of epigenom-
ic profiles with base-level DNA methylation data to learn and then
distinguish the epigenomic signatures of enhancers and genomic
background. We trained the model in a similar way as in previous
studies®*” using CG methylation, chromatin accessibility of each
epigenome cluster and mouse embryonic stem cells. The model was
first trained on mouse embryonic stem cell data and then predicted
a quantitative score that we termed enhancer score for the DMR of
eachcelltype. The positives were 2-kb regions centred at the summits
of the top 5,000 EP300 peaks in mouse embryonic stem cells. Nega-
tives included randomly chosen 5,000 promoters and 30,000 2-kb
genomic bins. The bins have no overlap with any positives or promot-
ers®. Methylation and chromatinaccessibility profiles in bigwig format
for mouse embryonic stem cells were from the mouse ENCODE pro-
ject®”. The mCG rate bigwig file was generated from cell-type-merged
ALLC files using the software ALLCOOLS (https://Ihqing.github.io/
ALLCools). For chromatin accessibility of each cell type, we merged
all fragments from snATAC-seq cells that were assigned to this cell
typeintheintegration analysis and used ‘deeptools bamcoverage’ to
generate CPM-normalized bigwig files. The bin size for all bigwig files
was 50 bp.

Motif enrichment analysis. We used 724 motif position weight ma-
trices (PWMs) from the JASPAR 2020 CORE vertebrates database®,
where each motif was able to assign corresponding mouse transcrip-
tion factor genes. For each set of REPTILE-predicted enhancers, we
standardized theregionlengthinto centre +250 bp and used the FIMO
tool from the MEME suite®® to scan the motifs in each enhancer with log
odds Pvalue <107¢as the threshold of the motifhit. To calculate motif
enrichment, we used the adult non-neuronal mouse tissue DMRs”® as
background regions. We subtracted enhancers in the region set from
the background and then scanned the motifs in background regions
using the same approach. We then used Fisher’s exact test to find motifs
enrichedinthe region setand the Benjamini-Hochberg procedure to
correct multiple tests. Transcription factors with significant motif
enrichmentwere grouped by TFClass™ classification. Genes within the
same group shared very similar motif’s.
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Cluster validation analysis
For cluster validation analysis, see Fig. 4.

Downsampling analysis of cluster number. For downsampling analy-
sis of cluster number, see Fig. 4a-d.

Preprocessing was done inthe same way as described inthe section
’Computational integration with SingleCellFusion’. After preprocess-
ing, we obtained a gene-by-cell feature matrix for each dataset. Only
neuronal cells passing quality control (Supplementary Table 1) and
highly variable genes for each dataset were included.

Clustering. Clustering (Fig. 4a) required three steps. We first reduced
feature dimensions by PCA (n=50). We then builtaKNN graph (k=30)
between cells using the Euclidean distance in the principal compo-
nent space. We finally applied the Leiden clustering algorithm with
afixed-resolution parameter (r = 6). For each dataset, we report the
number of clusters as afunction of the number of cells randomly down-
sampled from the full dataset. Error bars show the s.e.m. of (n =10)
rounds of downsampling.

Clustering with within-dataset cross-validation. This analysis
(Fig. 4c) aimed to estimate the optimal number of clusters of a dataset,
by testing which clustering granularity best preserves the gene-level
features of cells. For a given dataset, a gene-by-cell matrix, we first
randomly split gene features into two sets, for clustering and valida-
tion, respectively. To avoid any potential linkage, the split was done
by separating chromosomes into two sets, such that genes from the
same chromosomes were always in the same set. We then performed
Leiden clustering (as described in the methods related to Fig. 4a) on
all cells using the clustering feature set only, with different cluster-
ing resolutions. After clustering, every cell in the dataset received a
cluster label. We next randomly separated those cellsinto training and
testing sets. Using training-set cells, we trained a supervised model
to predict the validation set gene features based on cluster assign-
ments. The model was trained by minimizing the MSE between the
model prediction and the data. This is equivalent to predicting the
gene features of acell asits cluster centroid. Finally, we evaluated the
model performance by calculating the MSE for the cells in the test set.
This is equivalent to estimating the mean squared distance between
individual cellsinthetest set and the cluster centroid calculated using
thetraining set. Asafunction of the number of clusters (by varying the
resolution parameter in Leiden clustering), we observed a U-shaped
curve of the MSE. The minimum point of the curve represents the most
plausible clustering resolution. Applying this scheme to each dataset
and different downsampling levels of cells, we reportin Fig. 4c the num-
ber of clusters as a function of the number of cells, for each dataset.
For robustness, random splitting of gene features was repeated n=35
times; random splitting of cells was repeated n =5 times with k=5-fold
cross-validation each time.

Clustering with cross-dataset cross-validation. Extending the
within-dataset clustering cross-validation scheme used in Fig. 4c,
we developed a cross-dataset cross-validation method (Fig. 4d), by
combining the previously described within-dataset cross-validation
method with ajoint clustering method: SingleCellFusion. First, similar
to within-dataset cross-validation, we randomly split gene features
into clustering and validation sets for all datasets. We then generated
integrated clusterings across data modalities by applying SingleCell-
Fusion on all cells and on half of the gene features (the clustering fea-
ture set). After clustering, we estimated the MSE of clustering on the
validation feature set as described above for each dataset on its own.
Applying this scheme to different downsampling levels of cells, we
reportin Fig.4d the number of clusters as a function of the number of
cells from each dataset.

Integrated analyses: trade-off between replicability and resolution
and cluster consistency. For integrated analyses, see Fig. 4e, f. We col-
lected the clusters obtained with the four integrative clustering meth-
ods described previously (Conos, LIGER, RNA consensus clustering
from Fig.1and SingleCellFusion), as well as the ‘subclass’ level from the
independent clustering of the RNA datasets. Eachintegrative method
returned clusters at two granularity levels. We named the coarser level
of clustering L1and the finer level of clustering L2 clusters. We focused
our analyses on the neuron clusters of the transcriptomic data, as we
wished to investigate the agreement of neuron cluster hierarchies.

To quantify replicability, we used the same modified version of Meta-
Neighbor, the same datasets and the same variable genes as defined
above (see ‘MetaNeighbor analysis’). We used the one-vs-best AUROC
to obtain cluster similarity scores, then computed an average AUROC
score per integrated cluster (averaged over every pair of datasets in
whichthe clusteris present). For every method, wereported the median
AUROC acrossintegrated clusters as the final reproducibility score. To
quantify the overall similarity of the clustering results, we computed
the adjusted Rand index. When necessary, we restricted the adjusted
Randindex computation to theintersection of labelled cells (the inter-
section being recomputed for every pair of methods).

Conos analysis. To evaluate the extent to which different cell sub-
populations were supported by different platforms, we assessed the
difference in the ability to recover the corresponding cell with and
without within-platform comparisons. The clustering of cells was per-
formed using Conos™ (Fig. 4g, h), using walktrap community detection
toidentify hierarchical cell populations. The stability of the hierarchical
clusters was estimated as follows: 20 random cell subsampling rounds
were performed, each sampling 95% of cells from each dataset, and
repeating the walktrap hierarchical clustering procedure. For each
nodeinthe original walktrap tree, we evaluated stability as aminimum
of specificity and sensitivity relative to the ensemble of subsampled
trees by finding the best-matching subtree. To evaluate the ability to
recover subpopulations based on cross-platform comparisons only, we
removed within-platform edges (those connecting datasets generated
by the same platform) in the joint graph (generated by Conos). In this
way, the subpopulation was detected only based on mapping to the
other platform. The modified approach facilitates grouping of cell
populationsthat are commoninthe different platforms, asit removes
the platform-specificinformationin the joint graph.

To assess the similarity of the expression profiles detected by differ-
ent platforms for a given cell type (Fig. 4h), we used Jensen-Shannon
divergence to assess the overall similarity of gene expression patterns
between the four RNA-seq platforms (SCRNA 10x v3 A, snRNA 10x v3
A, scRNA SMART and snRNA SMART). Specifically, 1,000 cells were
sampled from each cell type for each platform. If the number of cells
from a cell type was fewer than 1,000 cells, sampling with replace-
mentwas performed. Cell types that accounted for less than1% (fewer
than 300 cells) in any specific platform were omitted. The molecules
detected for each gene were then aggregated across all sampled cells
foreach cell typein each platform. The counts were normalized by the
total number of molecules for each cell type or platform, and Jensen—
Shannon divergence was calculated.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The BICCN MOp data (RRID: SCR_015820) can be accessed via the
NeMO archive (RRID: SCR_016152) at: https://assets.nemoarchive.
org/dat-chlnqb?. Visualization and analysis resources can be found
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at: NeMO analytics (https://nemoanalytics.org/), Genome browser
(https://brainome.ucsd.edu/BICCN_MOp) and Epiviz browser (https://
epiviz.nemoanalytics.org/biccn_mop).
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Extended DataFig.1|A multimodal molecular cell-type atlas of the MOp.

a, Anatomicallocation of the mouse MOp in the Allen Mouse Brain Common
Coordinate Framework (CCFv3)in3D and inrepresentative sagittal and coronal
sections.b-d, Documentation of MOp samples collected at the Allen Institute
(b), the Broad Institute (c) and the Salk Institute (d). Each panel shows adiagram
of coronal brainslices and dissected regions for transcriptomic (scRNA-seq
and snRNA-seq) and epigenomic (snATAC and snmC-seq2) datasamples based
onthe Allen Mouse Brain Common Coordinate Framework (CCF). Nissl-stained
imagesindshow the posterior face of tissue slices (600 um thickness).

e, Number of cellsand median number of unique sequenced DNA or RNA
fragments per cellin each of the nine single-cell transcriptomic and
epigenomicdatasets. The squares show the extrapolated total library size
based onthesequence duplicationrate.f, Number of cellsin each of the major
cellclasses (glutamatergic excitatory, GABAergic inhibitory neurons and non-
neurons) of each dataset. Differencesin cell-type sampling strategy, including
theuse of cell sorting to enrich neurons, affect the relative number of neurons
and non-neuronal cells. Datasets include cells from the following numbers of
mice (Supplementary Table 1): sScRNASMART: n=28 male, 17 female; sScRNA 10x
v3 A:n=3male,3female; SCRNA10x v2 A: n=3 male; SnRNA SMART: n=8 male, 2
female; snRNA10x v3 B: n=5male, 6 female; SnRNA10x v2: n=2male,1female;
snRNA10xv3 A:n=1female; snmC-seq2 and snATAC-seq: n=2replicates, each
pooled from 6 to 30 male mice. g, NeMO Analytics (nemoanalytics.org)
visualization and analysis environment for the BICCN mouse molecular
mini-atlas. Screenshot of NeMO Analytics showing multi-omic results for

glutamate decarboxylase 2 (Gad2), amarker geneininhibitory neurons. The
web portal has the following features: (1) search box for gene names; (2)
indicator of the gene viewed; (3) expandable species-specific functional
annotation; (4) link-outs to additional resources for the selected gene; (5-7)
interactive visualizations of each BICCN dataset, displayed ina‘standalone’
box showing gene expression and cell clustering onintegrated UMAP
coordinates. Additional data exploration options for each of the datasets are
available via the drop-down menuat the upper right corner of the NeMO
Analytics dataset titles. (8) Anembedded Epivizinteractive workspace to
visualize scATAC-seq and sncMethyl-seq datasetsinalinear browser view (8a),
here showing the average ATAC and % CG methylation at the Gad2locus (8c, 8d)
aswell asineach major cluster of glutamatergic and GABAergic neurons (8b,
8e, 8f). Epigenomic dataare also available at http://epiviz.nemoanalytics.org/
biccn_mop, and instructions for setting up and extending the Epiviz
workspaces are available at http://github.com/epiviz/miniatlas. h, Brainome
epigenomics portal (https://brainome.ucsd.edu/BICCN_MOp). The portal
showssingle-baseresolution epigenomic and transcriptomicdata (snmC-seq2,
snATAC-seq, scCRNA-seq and snRNA-seq) using the AnnoJ browser. Drop-down
menus allow the user to select groups of cells (for example, excitatory,
inhibitory and MGE-derived, among others), modalities (mCG, mCA, ATAC,
scRNA, snRNA and enhancers) and display options. A Cell Browser allows
visualization of scatter plots and heat maps of groups of genes across data
modalities.
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Extended DataFig. 2| Cluster membership and gene expression
consistency across scRNA-seqand snRNA-seq datasets. a, Pearson
correlation of gene expression of 3,792 cell-type-specific marker genes across
celltypes between every pair of datasets. Each violin plot shows the
distribution of correlation values for all genes between a pair of datasets. Most
genes have highly conserved gene expression patterns at the cell-type level
amongall datasets (average correlation of 0.856 across all pairs of
comparisons). The most consistent datasets are sScRNA10x v2 and v3 (average
correlation of 0.95), while snRNA10x v3 Bis also highly similar to both scRNA
10x v2 and v3datasets. Overall, we found the differences between single-cell
and single-nucleus datasets to be more significant than SMART-Seq versus 10x
platformdifferences. b, Number of genes detected per cell or nucleus by each
transcriptomic assay as a function of sequencing depth, as determined by
downsampling analysis (n=79 independent biological samples; see
Supplementary Table1). ¢, Gene detection frequency (sensitivity) ateach gene
expressionrange for each dataset (n=79 independentbiological samples; see
Supplementary Table1). Expression of all genes in each cell type was binned
based ontheaveragelogCPMinscRNA10xv2and snRNA10x v3 B datasets.
Single-cell datasets overall have higher sensitivity for gene expression than
single-nucleus datasets, with the exception of the snRNA 10x v3 B dataset,
which was more sensitive than the scRNA 10x v2 A dataset. For weakly
expressed genes, the gene detection frequency can vary dramatically between
datasets. For these genes, sScRNA SMART was the most sensitive, followed by
10x v3 datasets, all of which showed very robust gene detection. Note that
sequencing depthwas not considered for this analysis. For b, ¢, box-and-
whisker plots show the median, the interquartile range (IQR) (25-75th
percentile), and the whiskers show the smaller of the data range (minimum to
maximum) or1.5times the IQR.d, Comparisons between clustering analysis of
individual datasets with the consensus clusters derived from seven
transcriptomic datasets. The size of the dot indicates the number of

overlappingcells, and the colour of the dot indicates the Jaccard index (number
of cellsinintersection/number of cells in union) between theindependentand
jointclusters. e, Comparison of the relative gene expression of marker genes
acrossall celltypes between corresponding SMART-Seqand 10x v2 datasets.
To compare gene expression directly between SMART-Seq and 10x datasets,
which differ in experimental platforms, gene expression quantification
software and gene annotation reference, for each gene, we normalized the
averagelog,(CPM +1) values at the cluster level in the range [0,1] by subtracting
the minimum value and then dividing by the maximum value for that gene. The
smoothscatter plot corresponds to the normalized gene expression for all
marker genes across alltypesintwo datasets, with their overall Pearson
correlation (across allmarker genes and cell types) highlighted. f, Differential
enrichment of transcripts insingle cells (x axis) versus single nuclei (y axis)
across four platforms. Non-coding RNAs such as Malat1 are enriched in nuclei.
g, Distribution of the estimated nuclear localization fraction for all mRNAs
based on comparison of the snRNA and scRNA 10x v2 datasets?. To calibrate
thedifferencesamong cell types, we sampled the same number of cellsin each
cluster for both datasets, and aggregated all the cells for estimation. We plot
the empirical cumulative density function for the marker genes and all other
genesseparately. The fraction of nuclear mRNAs for five selected genes are
shownalong the xaxis. As expected, mitochondrial genes such as mt-Nd3 have
almost nonuclear localization, whereas Vipis significantly enriched in the
nucleus. Aselected set of 3,792 cell-type-specific marker genes (see Methods
section ‘Marker gene selection’) have alower nuclear fractionrelative to the
other genes (median16.6%, compared with 21.9% for non-marker genes).

h, Cluster resolution analysis, showing the number of clusters identified in
eachtranscriptomic dataset with a fixed cluster procedure and resolution
(r=6)asafunctionof thenumber of sequenced reads, and using the same
number of cells for each of the 10x or SMART-Seq datasets. The shaded region
shows thes.e.m.from cross-validation withn=>5independent data partitions.
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Extended DataFig. 3| Correspondence betweenthe MOp consensus
RNA-seq cell-type taxonomy and previously published VISp/ALM cell-type
taxonomy?. a, Cells from all scRNA and snRNA MOp datasets were mapped to
the most correlated VISp/ALM cell types based on VISp/ALM cell-type markers.
Thesize of the dotsindicates the number of overlapping cells, and the colour
indicatestheJaccardindex (number of cellsinintersection/number of cells in
union). MOp L5SET types are mapped predominantly to L5 pyramidal tract (PT)
ALMtypesinthe VISp/ALM study. Note that we have adopted the nomenclature
‘extratelencephalically projecting (ET)’ for these neurons, instead of the

VISp/ALM clusters (Tasic et al., 2018)

previously used ‘pyramidal tract (PT)’, owing to the fact that not all of these
neurons project to the pyramidal tract leading to the spinal cord.b, Three LSPT
ALMtypescanbedividedinto two groups withdistinct projection patterns.
Cellsinthe pink group project to the medulla and have been functionally
associated with movementinitiation, while the cellsin the green group project
to the thalamus, associated with movement planning. Adapted from Economo
etal. (2018)'. ¢, Enlarged view of the correspondence between MOp LSET
typesand VISp/ALM LS5 PT types. Two subsets of medulla-projecting (pink) and
thalamus-projecting (green) L5 PT cells are highlighted.
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Extended DataFig.4 |Marker genesfor LSET celltypes.a, Heat mapshowing  typesinmultiple scRNA and snRNA datasets using the same marker genesin
expression of acombination of marker genes of LSPTALMtypesinapreviously  thesameorderasina.Celltypesaredividedinto pinkand green groups based
published dataset®, and marker genes for MOp L5 ET types. The coloured bars on correspondence in Extended Data Fig.3c.

onthetopindicatethe cell type and projection class. b, Heat map forMOp LSET
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Extended DataFig.5|Marker genesfor L4/5IT andL5IT cell types.
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and snRNA datasets. b, Insitu hybridization (ISH) showing validation of L4
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Extended DataFig. 6 | Epigenomic cell types and multimodalintegration.
a, Cell-type clusters from single-nucleus methyl-C-Seq (snmC-seq2 (refs. *1*))
for9,876 MOp nucleiarerepresented in atwo-dimensional projection. Labels
indicate broad celltypes; the colours show finest cluster resolution. b, Non-CG
DNA methylation level (normalized mCH) for each cell at gene bodies of
markers of major cell types. Actively expressed genes have low mCH, indicated
by the coloured bars extending downward. Highly methylated (repressed)
genes appear whitein this plot. ¢, Two-dimensional projection of cell-type
clusters fromsnATAC-seq" profiles for 81,196 cells. d, Gene body chromatin
accessibility (total snATAC-seq read density, log(CPM +1)) for marker genes.
Forbandd, eachbarrepresentsone cell. The abbreviations of cell type areasin

Fig.2. CGE/MGE, caudal/medial ganglionic eminence-derived inhibitory cells.
e, f,Integrated, multimodal UMAP embeddings (SingleCellFusion (e); LIGER
(f)) coloured by the clusters assigned in separate analysis of each dataset. Each
panel shows the cells fromasingle dataset. g, Integrated analysis of major cell
classes by LIGER. Cellsin each of the five cell classes are separately integrated,
illustrating fine-grained resolution of integrated data. h, Number of cellsin
each of 56 multimodality cell types (SingleCellFusion; L2), ranked by cluster
size.i,j, Number of cells for 56 integrated clusters (SingleCellFusion L2 (i);
LIGERL2 (j)), aswellasthe corresponding coarser clusters (L1, LO). Cluster
order and colour scheme are as shownin Fig. 2.
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Extended DataFig.7|Validation of multimodalintegration of low-dimensional space, and is anormalized measure of the mean number of
transcriptomic and epigenomic data. a, Confusion matrices comparing KNNs that come from each of the datasets. e, Embedding of multimodality

integrated clusters generated by SingleCellFusion versus clusters generatedby  cluster centroids. The black dots are cluster centroids of integrated clusters
LIGER (left), and comparing SingleCellFusion versus consensus transcriptomic  (SingleCellFusion); coloured dots are cluster centroids of individual datasets.

taxonomy (right). b, Confusion matrix comparing integrated clusters f,Molecular signatures at the gene body of Lhx9, a developmentally expressed
(SingleCellFusion L2) withsingle-modality clustering for every dataset. transcription factor, across cell types (n=29; SingleCellFusion L1). We found
¢,d, Agreementand alignment metrics® characterize the fidelity of the joint enrichmentof mCGand mCHin Lé6b neurons withno corresponding RNA or
low-dimensional embedding for LIGER and SingleCellFusion. Agreement ATAC-seqsignal. g, Spearman correlation matrix for cluster centroid gene
measures the fraction of KNNs for each dataset that are still nearest neighbours  expression (measured orimputed) across major cell subclasses for each

inthe low-dimensional embedding. A high value of the agreement metric thus dataset (SingleCellFusion LO). h, Correlation for subsets of inhibitory (CGE and
indicates preservation of each dataset’sinternal structure in the joint MGE) and excitatory (L4/51T and L2/31T) neuron types using fine-grained

embedding. Alignment measures the mixing of datasets in the joint integrated clusters (SingleCellFusion L2).
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SMART-Seq v4 (SSv4) Ultra Low Input RNA Kit for Sequencing (Takara Cat# 634894)
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The BICCN MOp data (RRID:SCR_015820) can be accessed via the NeMO archive (RRID:SCR_002001) at accession: https://assets.nemoarchive.org/dat-chlngb7.
Visualization and analysis resources: NeMO analytics: https://nemoanalytics.org/, Genome browser: https://brainome.ucsd.edu/annoj/BICCN_MOp/, Epiviz
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [ ] Behavioural & social sciences | | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Our study focuses on differences between major brain cell populations, which are highly conserved across individual mice. Sample size
(number of animals) was determined by the experimental requirements for collection of sufficient tissue for each assay.

For RNA-seq data, we collected tissue from a total of 45 animals for SMART-seq cells, 10 for SMART-seq nuclei, and 3~12 for various 10x
platforms. We used relatively larger number of animals for SMART-seq due to use of specific cre-lines and layer specific dissections. Due to
highly sensitive gene detection provided by the SMART-seq platform, we collected about ~6000 cells for both cells/nuclei, targeting at least 5
cells for any cell types with abundance more than 0.1%. Our previous studies suggest that highly distinct cell types can be detected with just 5
cells, while more subtle cell type differences can be detected with 20~50 cells. For 10x, we collected at least 100,000 cells for each platform,
targeting at least 100 cells for any cell types with abundance more than 0.1%.

For collection of single nuclei by FACS for the epigenomic datasets (snmC-seq and snATAC-seq), we collected tissue from 6-23 individual mice
for each sub-region of MOp (different anterior-posterior levels). Larger numbers of mice were used for relatively small subregions, which
ensured that at least 2,500 single neuronal nuclei (NeuN+) were obtained from each sample. We collected tissue from two independent pools
of animals (biological replicates) to calibrate inter-sample variability due to inter-individual differences.

In no case did we observe differences between individual animals or batches that were similar in magnitude to the reported cell type
differences. The number of cells collected was determined by specific limitations of each data modality, and the effect of this sample size was
extensively analyzed as part of the paper (Figure 6).

Data exclusions  Low quality cells and putative doublets were excluded based on criteria that are described in detail in the Methods.

SMART-seq: Cells that met any one of the following criteria were removed: < 100,000 total reads, < 1,000 detected genes (CPM > 0), < 75% of
reads aligned to the genome, or CG dinucleotide odds ratio > 0.5.

10x RNA-seq: For scRNA datasets, we excluded neurons with fewer than 2000 detected genes and non-neuronal cells with fewer than 1000
detected genes; for snRNA datasets, we excluded neurons with fewer than 1000 detected genes and non-neuronal cells with fewer than 500
detected genes. Doublets were identified using a modified version of the DoubletFinder algorithm and removed when doublet score > 0.3.
After clustering of individual datasets, we also removed some clusters that we believed were driven by technical artifacts: clusters with strong
markers indicating their regional identities outside of MOp, rare doublet clusters that were not captured by the doublet score but contain the
markers from multiple highly distinct cell types (e.g. neurons and non-neuronal types), and low quality clusters showing significant gene loss,
but no up-regulated genes relative to another similar cluster. Cells from these clusters were eliminated from downstream integrative analysis.
A full description of the procedure for exclusion of artifactual clusters is provided in Methods in the section "Clustering individual datasets".

snATAC-seq: We excluded any single cells that had fewer than 1,000 unique fragments or a TSS enrichment of <10 for any sample sets. We
used Scrublet (RRID:SCR_018098)52 to remove potential doublets for every sample set

snmC-seq: We filtered the cells based on quality metrics: 1) The rate of bisulfite non-conversion as estimated by the rate of methylation at
CCC positions (mCCC) < 0.03. mCCC rate reliably estimates the upper bound of bisulfite non-conversion rate8, 2) overall mCG rate > 0.5, 3)
overall mCH rate < 0.2, 4) total final reads (combining R1 and R2) > 500,000, 5) Total mapping rate (using Bismark54) > 0.5.

In addition, during the RNA consensus clustering analysis, we excluded clusters as follows (this text is in the Methods):

Removal of low-quality and doublet-driven clusters. We performed differential gene expression analysis between every pair of clusters within
each subclass. If any cluster had <2 up-regulated genes (fold-change>2, FDR<0.01, with additional penetrance and odds ratio criteria
described in Method transcriptome analysis section) compared to another cluster, and had a substantially lower average number of detected
genes per cell, we flagged the cluster as low-quality and removed it from further analysis. Next, if the up-regulated genes between any two
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clusters within a subclass were predominantly marker genes for a different subclass, and one of the clusters had significantly higher average
genes detected per cell and UMI count, we flagged the cluster as a potential doublet cluster and removed it from further analysis. These
criteria led to the exclusion of 8.3% of all cells, the vast majority of which came from the two 10x v3 datasets (sScRNA 10X v3 A, snRNA 10X v3
B). While the 10X v3 platform boosts the gene detection for good cells, it does the same to damaged cells or debris, leading to an elevated
number of clusters that were excluded for these datasets.

Replication Findings in each modality were extensively compared across biological replicates (at least 2 replicates of each experiment). We did not
observe any disagreement between replicates in terms of the biological conclusions, such as the identity of cell types. In addition, we
extensively characterize the multimodal correspondence and concordance of the datasets, providing robust validation of cell types.

For the snmC and snATAC data, replicates from the same brain region are co-clustered compared to samples from other brain regions. Within
each cluster, we calculated Pearson correlations between each replicates, and found that all replicates are highly conserved (Pearson corr. >

0.95).

Randomization  Not applicable. Our study does not compare treatment and control groups. Instead we focus on characterizing the cell types that are present
in untreated adult mice. Single cell sequencing provides a random sample of cells derived from the source tissue.

Blinding Not applicable. There were no treatment and control groups, and no pre-defined hypotheses regarding cell type identity.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology |Z |:| MRI-based neuroimaging

Animals and other organisms

Human research participants

XX XXX &
OOXoOdoo

Clinical data

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Salk: Mouse (mus musculus), strain C57BL6/J (RRID:IMSR_JAX:000664), both males and females, 53-63 days of postnatal age.
Male C57BL/6J mice were purchased from Jackson laboratories at 8 weeks of age and maintained in the Salk animal barrier
facility on 12-hr dark-light cycles with controlled temperature (20-22 Celcius range) and humidity (30-70% range), and food ad
libitum for one week before dissection.

Allen Institute: All procedures were carried out in accordance with Institutional Animal Care and Use Committee protocols at the
Allen Institute for Brain Science. Mice were provided food and water ad libitum and were maintained on a regular 12-h day/night
cycle at no more than five adult animals per cage. Ambient temperature was set to 72°F and relative humidity was set to 40%.

Broad Institute: Animals were group housed with a 12-hour light-dark schedule and allowed to acclimate to their housing
environment for two weeks post arrival. Ambient temperature was set to 70°F + 2°F and relative humidity was set to 40% + 10%.
All rooms are on 12/12 hour light/dark cycle.

Wild animals Not applicable. No wild animals were used in this study.
Field-collected samples Not applicable. No field collected samples were used in this study
Ethics oversight All procedures at the Allen Institute were carried out in accordance with Institutional Animal Care and Use Committee protocols

at the Allen Institute for Brain Science.

All procedures involving animals at MIT were conducted in accordance with the US National Institutes of Health Guide for the
Care and Use of Laboratory Animals under protocol number 1115-111-18 and approved by the Massachusetts Institute of
Technology Committee on Animal Care. All procedures involving animals at the Broad Institute were conducted in accordance
with the US National Institutes of Health Guide for the Care and Use of Laboratory Animals under protocol number 0120-09-16.

Experiments conducted at The Salk Institute in accordance with the US National Institutes of Health Guide for the Care and Use
of Laboratory Animals under protocol number 18-00006 and approved by the Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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