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Single-cell transcriptomics can provide quantitative molecular signatures for large, 
unbiased samples of the diverse cell types in the brain1–3. With the proliferation of 
multi-omics datasets, a major challenge is to validate and integrate results into a 
biological understanding of cell-type organization. Here we generated transcriptomes 
and epigenomes from more than 500,000 individual cells in the mouse primary motor 
cortex, a structure that has an evolutionarily conserved role in locomotion. We 
developed computational and statistical methods to integrate multimodal data and 
quantitatively validate cell-type reproducibility. The resulting reference atlas—
containing over 56 neuronal cell types that are highly replicable across analysis 
methods, sequencing technologies and modalities—is a comprehensive molecular and 
genomic account of the diverse neuronal and non-neuronal cell types in the mouse 
primary motor cortex. The atlas includes a population of excitatory neurons that 
resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered 
thousands of concordant marker genes and gene regulatory elements for these cell 
types. Our results highlight the complex molecular regulation of cell types in the brain 
and will directly enable the design of reagents to target specific cell types in the mouse 
primary motor cortex for functional analysis.

The cellular components of brain circuits are extraordinarily diverse5,6. 
Single-cell molecular assays, especially transcriptomic measurements 
by RNA sequencing (RNA-seq), have accelerated the discovery of cell 
types across brain regions and in diverse species7. Recent advances 
include single-cell transcriptomic datasets with more than 105 individ-
ual cells, identifying hundreds of neuronal and non-neuronal cell types 
across the mouse nervous system1–3. As the number of profiled cells 
grows into the millions, a key question is whether these data will con-
verge towards a comprehensive, coherent taxonomy. Although a com-
prehensive cell atlas should incorporate anatomical and physiological 

information, the high throughput of single-cell sequencing assays pre-
sents an opportunity for establishing a broad-based transcriptomic and 
epigenomic cell atlas. Molecular and genomic cell signatures will drive 
progress across modalities and help to obtain functional information.

Within the BRAIN Initiative Cell Census Network (BICCN), we aim 
to create an atlas of cell types across the brain of several mammalian 
species by integrating multiple single-cell omics approaches. We 
selected the primary motor cortex (MOp) (Extended Data Fig. 1a–d) 
as the starting point for our joint efforts owing to its relatively con-
served structure and function across mammalian species. The MOp 
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lacks species-specific cellular structures, such as the whisker barrels 
in the rodent primary somatosensory cortex and the elaborate layer 
4 (L4) with multiple sublayers in the primate primary visual cortex. 
Traditionally, the MOp is considered to lack a cytoarchitechtonically 
defined granular layer (L4), although neurons in the MOp with L4-like 
connectivity have been identified4. Our mouse MOp atlas is a case study 
of the expansive potential and the technical limitations of single-cell 
molecular methods for comprehensive brain-wide analysis of cell types.

Single-cell transcriptomics identifies cell-type marker genes and 
gene modules that shape functions such as the mode of synaptic 
communication8. Epigenomic measurements of DNA methylation 
and open chromatin provide signatures of gene regulation, including 
non-coding regulatory regions such as enhancers. Neurons acquire 
unique patterns of CG and non-CG DNA methylation during postnatal 
development9,10 and have cell-type-specific open chromatin11. Together, 
transcription and epigenetic modifications establish attractors in a 
cell-state space that corresponds to cell types12,13. Here we integrated 
large-scale single-cell transcriptomic and epigenomic datasets to 
achieve a reference taxonomy for the adult mouse MOp.

Multimodal molecular census of mouse MOp
We produced nine datasets, including seven single-cell or single-nucleus 
transcriptomic dataset (single-cell RNA-seq (scRNA-seq) and 
single-nucleus RNA-seq (snRNA-seq) using 10x v2, v3 and SMART-Seq 
v4; n = 526,373 high-quality cells), one single-nucleus DNA methylation 
dataset (snmC-seq2; n = 9,872) and one single-nucleus open chromatin 
dataset (single-nucleus assay for transposase-accessible chromatin 
using sequencing (snATAC-seq); n = 81,196) (Extended Data Fig. 1e, f, 
Supplementary Table 1). These span a range of technologies, assaying 
different numbers of cells, with different depths of sequence coverage 
per cell, and assessing different biological features (Fig. 1a). The datasets 
reflect the trade-off between the number of sequenced molecules per 
cell, which depends on cell size and the efficiency of RNA or DNA cap-
ture, and the total number of cells that can be assayed for a fixed total 
cost. Our datasets include single-nucleus transcriptomes from over 
175,000 cells (using the 10x Chromium 3′ v3 platform), which captures 
a median of 3,100–12,700 unique molecular identifiers (UMIs) per cell. 
By contrast, full-length transcript sequencing using SMART-Seq v4 
captured a greater number of unique molecular fragments per cell (1 mil-
lion–2.1 million), but covered fewer cells (approximately 6,300 cells per 
dataset). Data on single-nucleus DNA methylation provided deep cover-
age of the epigenome per cell (median of 1.66 million unique sequenced 
DNA fragments, covering 6.2% of the genome) for a modest number of 
cells9,14 (approximately 9,800 cells). Finally, snATAC-seq data scaled to 
over 81,000 cells but sampled fewer DNA fragments for individual cells 
(median of 3,778 unique fragments per cell; Supplementary Table 1)11.

Subsampling RNA-seq datasets (Extended Data Fig. 2b, Supplemen-
tary Table 1) showed that scRNA-seq generally detects more genes per 
cell (up to approximately 7,100 median genes per cell for 10x and 10,000 
for SMART) than snRNA-seq (up to approximately 4,000 for 10x and 
5,800 for SMART). The 10x v3 platform detected 60–100% more genes 
than 10x v2. The number of genes detected per cell in the snRNA-seq 10x 
v3 B dataset (median of approximately 4,000 genes), using an improved 
nucleus isolation protocol15 (Methods), was substantially higher than the 
other snRNA-seq datasets (1,700–3,500 genes) and was similar to the 
scRNA-seq 10x v3 dataset when compared at the same sequencing depth.

We created web resources to interactively access, explore, visualize 
and analyse the raw and processed datasets (Extended Data Fig. 1g, h).

A consensus transcriptomic atlas of MOp
To establish a transcriptomic reference atlas of the mouse MOp, we 
jointly analysed seven scRNA-seq and snRNA-seq datasets. The data-
sets were mutually consistent, with strongly correlated expression of 

cell-type marker genes (Extended Data Fig. 2a, d, e) despite different 
sensitivity to genes with low expression (Extended Data Fig. 2c). We 
used computational data integration (Methods) to jointly cluster and 
identify 116 cell types using all the datasets (Fig. 1b, c, Extended Data 
Fig. 2d, Supplementary Tables 2, 3). Cells and nuclei, assayed by each 
of the technologies and in each batch, grouped primarily by cell type 
and not by dataset (Fig. 1b). Residual systematic differences between 
nuclear and cellular RNA-seq assays were observed in some clusters as 
a gradient of transcriptomes from different datasets. We performed 
hierarchical clustering to uncover the relationships among types within 
each major cell class: GABAergic inhibitory neurons (n = 59 types), 
glutamatergic excitatory neurons (n = 31) and non-neurons (n = 26) 
(Fig. 1d). Six of the transcriptomic datasets used cell-sorting strate-
gies to enrich neurons relative to non-neuronal cells, while the largest 
dataset (snRNA-seq 10x v3 B) represents an unbiased sample of both 
neuronal and non-neuronal cells. Despite these differences, the rela-
tive frequency of cell types was highly consistent across datasets after 
normalizing for the total sample of each major class (Supplementary 
Table 3). Most cell types (86 out of 116) were present in all of the datasets, 
whereas the rest were non-neuronal types that were under-sampled in 
many datasets or were extremely rare types (less than 0.01% of all cells).

To facilitate the use of these cell types by investigators, we adopted 
a nomenclature that incorporates multiple anatomical and molecu-
lar identifiers. For example, we identified four clusters of excitatory 
neurons (expressing Slc17a7, which encodes the vesicular glutamate 
transporter VGLUT1) that express a deep layer marker, Fezf2, as 
well as Fam84b, which is a unique marker of the pyramidal tract3 or 
extratelencephalically- projecting neurons (ET) 16 (Fig. 1e). Thus, we 
labelled these neurons ‘L5 ET 1–4’. We divided GABAergic neurons into 
five major subclasses based on marker genes: Lamp5, Sncg and Vip, 
which label cells derived from the caudal ganglionic eminence, and 
Sst and Pvalb, which label cells derived from the medial ganglionic 
eminence. Finer distinctions among GABAergic types are identified 
by secondary markers (for example, Sst and Myh8). Tables of cluster 
accession IDs and differentially expressed genes between every pair 
of cell types help to track the cell types and their underlying molecular 
evidence17 (Supplementary Tables 3, 6).

We compared our MOp atlas with a large dataset of neurons from 
the mouse anterolateral motor cortex and the primary visual cortex 
assayed by scRNA-seq (SMART-Seq)3 (Extended Data Fig. 3a). We found 
one-to-one matches between most of the 116 MOp cell types and the 102 
cell types previously defined in the anterolateral motor cortex. Four 
types of L5 ET neurons correspond with three previously described 
deep layer excitatory neurons with distinct subcortical projection 
patterns to the thalamus and the medulla18 (Extended Data Fig. 3b, c). 
These types, which were associated with distinct roles in movement 
planning and initiation, had consistent patterns of differential gene 
expression across the transcriptomic datasets (Extended Data Fig. 4).

The motor cortex is traditionally considered to lack a discernible L4 
based on the absence of a clear cytoarchitectonic signature19. However, 
recent anatomical studies have identified a population of pyramidal 
cells located between L3 and L5, with hallmarks of L4 neurons includ-
ing thalamic input and outputs to L4 and L2/3 (ref. 4). We identified two 
intratelencephalically projecting (IT) clusters, containing over 99,000 
cells, which express a combination of markers usually associated with 
L4 (ref. 20), including Cux2, Rspo1 and Rorb (both clusters), and those 
associated with L5, for example, Fezf2 (one cluster) (Fig. 1e, Extended 
Data Fig. 5a). We confirmed the specificity of the expression of these 
genes in the MOp by in situ hybridization (Extended Data Fig. 5b). These 
cells represent a substantial fraction (18% or more) of all excitatory 
neurons in each dataset. Therefore, we labelled these clusters L4/5. 
Moreover, the localization of cells with these gene markers in middle 
layers is further supported by spatial transcriptomics21.

Using our integrated dataset, we directly compared the nuclear and 
cytoplasmic transcriptomes of MOp cells. Both modalities can achieve 
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comparable clustering resolution (Extended Data Fig. 2d), as previously 
reported22, but they provide distinct information about some cell types 
and transcripts. We found that the long non-coding RNA Malat1 was 
enriched in snRNA-seq, consistent with its nuclear localization23 (Fig. 1f, 

Extended Data Fig. 2f). By contrast, mRNA of the protein-coding gene 
Ywhaz was strongly depleted from the nucleus.

We used MetaNeighbor to assess the cross-dataset replicability of 
clusters defined separately using each of the seven transcriptomic 
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Fig. 1 | Multi-platform transcriptomic taxonomy of the cell types in the 
MOp. a, Key attributes of nine single-cell transcriptomic and epigenomic 
datasets from the mouse MOp. b, c, Two-dimensional projection (uniform 
manifold approximation and projection (UMAP)40) of cells and nuclei based on 
integrated analysis of seven transcriptomic (scRNA-seq and snRNA-seq) 
datasets. Cells and nuclei are coloured by dataset (b) using the colours shown in 
a, or by cell type (c). Non-neuronal cell types are depleted owing to the sampling 
strategy, which enriched neurons in all datasets except snRNA 10x v3 B.  
d, Dendrogram showing a hierarchical relationship among the consensus 
transcriptomic cell types and a proportion of cells of each type per dataset, 
normalized within major classes. Glu, glutamatergic. e, Expression of selected 
marker genes for excitatory (top) and inhibitory (bottom) cell classes, across 

four platforms. f, Differential enrichment of transcripts in single cells versus 
single nuclei. The long non-coding RNA Malat1 is enriched in nuclei. CPM, 
counts per million reads mapped. g, The number of replicable clusters across at 
least two of the seven scRNA-seq and snRNA-seq datasets as a function of the 
minimal MetaNeighbor score (AUROC). h, The trade-off between the number of 
clusters and replicability (the per cent of clusters with minimal MetaNeighbor 
replicability score). The major inhibitory neuron subclasses are Lamp5, Sncg, 
Vip, Sst and Pvalb. Astro, astrocyte; CT, corticothalamic; endo, endothelial; ET, 
extratelencephalically projecting; IT, intratelencephalically projecting;  
micro, microglial cell; NP, near-projecting; oligo, oligodendrocyte; OPC, 
oligodendrocyte precursor cell; peri, pericyte; PVM, perivascular macrophage; 
SMC, smooth muscle cell; VLMC, vascular leptomeningeal cell.



106  |  Nature  |  Vol 598  |  7 October 2021

Article
datasets24 (Supplementary Table 4). We found 70 clusters with a 
high replicability (area under receiver operating characteristic 
(AUROC) > 0.7 across at least two datasets) (Fig. 1g). Most clusters had 
reciprocal best matches across all datasets (Extended Data Fig. 8a). By 
comparing the results of three different widely used single-cell analysis 
packages25–27, we found lower replicability for fine-grained partitions 
of cells into 30 or more clusters (Fig. 1h). These results highlight the 
importance of careful biologically informed cluster analyses.

Combining transcriptomes and epigenomes
Regions of open chromatin and patterns of DNA methylation, includ-
ing CG and non-CG methylation, are cell-type-specific signatures of 
neuronal identity and can be assayed in single nuclei9,11. We applied 
snmC-seq2 (ref. 14) (9,876 cells) and snATAC-seq28 (81,196 cells) assays 
to nuclei isolated from the same MOp samples. Independent analy-
ses of each epigenomic dataset identified n = 42 cell types using DNA 
methylation, and n = 33 cell types using open chromatin (Extended Data 
Fig. 6a–d, Supplementary Table 4). Marker genes for major cell classes 
had corresponding patterns of cell-type-specific depletion of non-CG 
methylation (low mCH; Extended Data Fig. 6b) and open chromatin in 
the gene body (Extended Data Fig. 6d).

We integrated eight transcriptomic and epigenomic datasets using 
two computational methods (linked inference of genomic experimen-
tal relationships (LIGER)29 and SingleCellFusion30) to produce a uni-
fied, multimodal cell census (Fig. 2a–c, Extended Data Figs. 6e–j, 7a, b,  
Supplementary Table 5). We reasoned that cells of the same type meas-
ured in each modality can be identified based on correlated gene-centric 
features. Gene expression is negatively correlated with gene body 
non-CG methylation9 and positively related to the gene body and pro-
moter ATAC-seq read density31. Although distal regulatory elements  
(for example, enhancers) were not used for dataset integration, they 
were subsequently analysed at the level of integrated cell types.

By combining cells from integrated clusters into pseudo-bulk tracks, 
we obtained base-resolution epigenomic and transcriptomic informa-
tion (Fig. 2f, g) (https://brainome.ucsd.edu/BICCN_MOp). To illustrate, 
we highlight the locus of Tac1, which encodes a precursor of the neuro-
peptide substance P and marks a subset of interneurons derived from 
the medial ganglionic eminence32. We confirmed Tac1 mRNA expression 
in parvalbumin-expressing neurons marked by Reln and Calb1. We 
further observed accessible chromatin and low DNA methylation at CG 
sites within the body of the Tac1 gene and at a location approximately 
24 kb upstream of the transcription start site (Fig. 2f).

Both computational integration methods (LIGER and SingleCellFu-
sion) identified 56 cell types, which showed a high degree of concord-
ance between the methods and with the transcriptome-based consensus 
clusters (Extended Data Fig. 7a–d). Indeed, integrated analysis identified 
more cell types than the single-modality analysis of each epigenomic 
dataset, while largely concurring with the independent clusters (Extended 
Data Fig. 7b). Integration revealed notable examples of cross-modal 
cell-type-specific signatures. For example, Tshz2 is a specific marker of L5 
near-projecting excitatory neurons, with low DNA methylation (mCG and 
mCH), open chromatin and strong cell-type-specific expression (Fig. 2d, 
e, g). The close correspondence between transcriptomic and epigenomic 
signatures at Tshz2, and at 35 markers of other cell types, was evident 
across each of the datasets (Fig. 2d). Importantly, these pseudo-bulk 
tracks include data, such as CG methylation and intergenic snATAC-seq 
signals, that were not used for the multimodal computational integration.

In addition to concordant cross-modal signals, we also found loci 
where transcriptomic and epigenomic data diverged. For instance, at 
Lhx9, we found high DNA methylation in L6b excitatory neurons, with lit-
tle or no methylation in any other cell type (Fig. 2g, Extended Data Fig. 7f). 
Despite this cell-type-specific DNA methylation, we found no expression 
of Lhx9 RNA in any cell type and no significant enrichment of ATAC-seq 
reads. Lhx9 has been implicated in early developmental patterning of 

the caudal forebrain and may be transcriptionally silenced in the adult, 
potentially through Polycomb-mediated repression33. Other regulators 
of neural development, such as Pax6 and Dlx1/2, have a similar epige-
netic profile with cell-type-specific hypermethylation. This pattern may 
represent a vestigial epigenetic signature of embryonic development34.

Cell-type-specific epigenomic marks
Epigenomic data identify potential regulatory regions, such as dis-
tal enhancers, marked by open chromatin and low DNA methylation 
(mCG). These modalities have complementary technical characteris-
tics, such as the number of cells assayed (higher for open chromatin) 
and the genomic coverage per cell (higher for DNA methylation; Fig. 1a). 
We first defined differentially methylated regions (DMRs) and chro-
matin accessibility peaks independently, identifying over 1.3 million 
DMRs covering 225 Mb (8.3% of the genome) and 300,000 accessible 
regions (170 Mb) (Fig. 3a, b). In each cell type, a large fraction of acces-
sible regions (28–89%) overlapped hypomethylated DMRs (Fig. 3a). By 
contrast, many DMRs did not overlap accessibility peaks (Fig. 3b). In 
some cases, these DMRs coincided with broad open chromatin regions, 
such as whole gene bodies, which had no narrow ATAC peaks.

By downsampling data from two abundant cell types (L2/3 IT and 
L6 CT neurons), we found that the number of detectable accessibility 
peaks was saturated after sampling around 1,000 cells (Fig. 3c). By 
contrast, the number of DMRs reached a plateau after sampling 200–
300 cells (Fig. 3d). Furthermore, the number of significantly enriched 
transcription factor motifs increased with the number of cells (Fig. 3e); 
although for L6 CT neurons, it reached a plateau of approximately five 
key motif families after sampling around 100 cells.

Combining both epigenomic datasets, we identified 250,000 puta-
tive enhancers with fine resolution35 (Supplementary Table 7). Putative 
enhancers were often found in distal regions, at least 2 kb from the near-
est transcription start site (Fig. 3h, i). Sequence motifs of several tran-
scription factor families were enriched in each cell type (Fig. 3f), such 
as Rfx motifs in L2/3 neurons. Using the transcriptomic data, we found 
that Rfx3, but not other Rfx family members, was specifically enriched 
in L2/3 neurons and had low methylation and accessible chromatin in 
the gene body as well as approximately 15 kb upstream of the Rfx3 pro-
moter (Fig. 3g). These data suggest a key role for Rfx3 in L2/3 neurons.

Reproducible cell types across datasets
Different molecular modalities, sampling strategies, sequencing tech-
nologies and computational analysis procedures can lead to diver-
gent estimates of the total number of cell types. We used systematic 
cross-dataset analyses to assess the statistical and biological reproduc-
ibility of cell types and constrain the range of plausible numbers of cell 
types based on current single-cell sequencing data.

We first addressed the effect of the number of sampled cells on the 
resolution of the cell atlas, by downsampling each dataset followed by 
clustering analysis with a fixed resolution parameter (Fig. 4a). The num-
ber of detected neuronal cell types (clusters) increased logarithmically 
with cell number, with relatively few additional clusters detected after 
sampling approximately 80,000 cells or nuclei. Notably, the depend-
ence of the number of clusters on the number of sampled cells was 
similar for all modalities and datasets, showing that the number of 
sampled cells is a key determinant of cluster resolution.

Any dataset can be divided into increasingly fine-grained clusters, yet 
they may not reflect biologically meaningful or reproducible cell-type 
distinctions. We used cross-validation to objectively measure the general-
izability of cluster-based descriptions of the data (Extended Data Fig. 8b). 
We first used within-dataset cross-validation, dividing the features (genes 
or genomic bins) into clustering and validation sets. After clustering all 
cells using the clustering feature set, we split the cells into training and 
test sets. We used the training cells to learn the validation set features 

https://brainome.ucsd.edu/BICCN_MOp
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for each cluster. Finally, we compared the validation set features with the 
held-out data for test cells to measure the mean squared error. We applied 
this procedure to each dataset with a range of clustering resolutions, 
resulting in a U-shaped cross-validation curve for the test set error as a 
function of the number of clusters (Fig. 4b, Extended Data Fig. 8c, d). The 
location of the minimum mean squared error is an estimate of the number 

of reliable clusters. Finally, we repeated this cross-validation procedure 
for each dataset in combination with systematic downsampling (Fig. 4c).

All of the datasets (except snRNA SMART-Seq) supported approxi-
mately 100 or more cell types when a sufficient number of cells was 
sampled. The number of cells required to achieve this resolution was 
larger for snATAC-seq (with few reads per cell) than for RNA-seq or 
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snmC-seq2. This observation is consistent with the relative sparseness 
of the snATAC-seq data. We further found that scRNA-seq and snRNA-seq 
datasets with the largest numbers of cells could support very high cluster 
resolution with up to approximately 600 clusters. Our cross-validation 
analysis shows that these fine-grained clusters capture genuine transcrip-
tomic structure, which is correlated and replicable across cells and across 
genomic features. However, at least some of this structure probably cor-
responds to continuous variation within discrete cell types, rather than 
discrete cell-type categories36. Moreover, the cross-validation analysis 
shows no sharp error minimum at a particular value of the number of 
clusters. Instead, the U-shaped cross-validation curve has a broad basin 
covering a range of plausible values (Fig. 4b, Extended Data Fig. 8c, d).

To more stringently test the reproducibility of cell types, we per-
formed cross-dataset cross-validation (Extended Data Fig. 8b). This 
procedure uses a randomly chosen half of genomic features to perform 
data integration and joint analysis of eight datasets using SingleCellFu-
sion. Next, we used the joint cluster labels to perform cross-validation 
in each dataset, as in the within-dataset procedure above. This analysis 
supported a maximum resolution of approximately 100 clusters when 
testing using the scRNA SMART-Seq data (Fig. 4d).

As an alternative to joint analysis of multiple datasets, which could 
potentially discern spurious correlations owing to computational data 
integration, we also took a more stringent approach to cross-validation. 
Using the independent cluster analysis of each dataset, we performed 

MetaNeighbor analysis to assess the replicability of clusters24. We 
found that the median replicability score for all clusters was high 
(AUROC > 0.8) for integrated analyses with coarse resolution (less 
than 50 clusters, level 1 analyses; Fig. 4e). The more fine-grained joint 
analyses (level 2; 50–120 clusters) were also largely supported by 
MetaNeighbor, but with a lower median replicability score around 0.7. 
Notably, we found a high degree of consistency in the results of joint 
cluster analysis when using different computational methods (Fig. 4f).

Finally, we explored whether cell-type signatures in the MOp were  
stable across different scRNA-seq and snRNA-seq platforms. Using four 
RNA-seq datasets (scRNA SMART, snRNA SMART, scRNA 10x v3 A and snRNA 
10x v3 A), we performed clustering on a network of samples (Conos37) to 
link cells across datasets and determine joint clusters. We compared the  
clustering results based on inter-platform network connections only ver-
sus results that also included connections across datasets of the same 
platform (Extended Data Fig. 8e). Most neuron types, except parvalbumin- 
expressing interneurons and L6 CT, had only a modest difference in cluster  
stability using both approaches (Fig. 4g) and a low level of inter-platform  
divergence in their cell-type transcriptomic signatures (Fig. 4h).

Discussion
Our MOp cell atlas represents the most comprehensive, integrated 
collection of single-cell transcriptomic and epigenomic datasets for a 
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single brain region to date. We generated a high-resolution consensus 
transcriptomic cell-type taxonomy that integrates seven scRNA-seq 
and snRNA-seq datasets collected from the MOp with six experimen-
tal methods. Our transcriptomic taxonomy is highly consistent with 
a previously published transcriptomic cell census from the primary 
visual and the anterolateral motor cortices based on SMART-Seq alone3. 
We found that gene expression profiles were largely consistent across 
methodologies, while providing complementary information about 
particular genes such as nucleus-enriched transcripts. The MOp atlas 
demonstrates the power of a two-pronged strategy that combines broad 
sampling of diverse cell types (for example, 10x with a large number 
of cells and shallow sequencing) with deep sequencing (for example, 
SMART-Seq) to precisely characterize gene expression profiles for each 
cell type. This strategy should guide future cell census efforts, by the 
BICCN and others, at the scale of whole brains and in other species.

We further demonstrated multimodal integration of transcriptomic 
(scRNA-seq and snRNA-seq), DNA methylation (snmC-seq2) and chroma-
tin accessibility (snATAC-seq) datasets using two computational meth-
ods (SingleCellFusion and LIGER). It is possible to directly establish links 
between molecular modalities through simultaneous measurement of 
multiple signatures in the same cell38. However, multimodal single-cell 
assays remain challenging and often provide lower depth or resolution 
of data in each modality than single-modality assays. Moreover, it is 
important to show that data collected from different animals, across 
different laboratories and using different experimental platforms and 
assays, nevertheless can be integrated within a unified cell-type atlas. By 
correlating mRNA transcripts, gene body methylation and accessibility 
peaks, we showed that different types of data can be integrated without 
forfeiting the resolution of more than 50 fine-grained neuron types. 
Integrative analysis of transcriptional and epigenetic signatures of cell 
identity will enable the development of tools based on cell-type-specific 
enhancers for cell targeting and manipulation.

Our data provide new insights into the molecular architecture of 
cell types in the MOp. Tac1, encoding the neuropeptide substance 
P precursor, marks a subset of parvalbumin-expressing cells and is 
strongly upregulated in the rodent MOp following motor learning32,39. 
We found that Tac1 is expressed in two subtypes of MOp interneurons 
(Pvalb_Calb1 and Pvalb_Reln), and our epigenomic data identified a 
cell-type-specific enhancer approximately 24 kb upstream of the gene 
promoter. We provide new evidence that the MOp has an excitatory 
neuron population that expresses markers of L4 thalamic-recipient 
neurons, including Cux2, Rspo1 and Rorb4. The laminar distribution of 
these cells has been confirmed by in situ hybridization of these marker 
genes and in a parallel study by MERFISH21. This discovery revises the 
traditional understanding of the MOp as an agranular cortex lack-
ing L4. We also found multiple types of L5 ET neurons that align with 
recently described populations with distinct subcortical projection 
targets18. Moreover, we identified networks of gene expression regu-
latory elements, marked by overlapping regions of open chromatin 
and cell-type-specific demethylation, that have sequence motifs that 
identify the key transcriptional regulators. For example, by combining 
epigenetic and gene expression data, we identified Rfx3 as a candidate 
factor for L2/3 IT cells. We also identified genes with non-canonical 
regulatory signatures, such as enrichment of mCG in Lhx9, specifically 
in L6b excitatory cells.

We took advantage of the unprecedented diversity of large-scale 
datasets, generated in a coordinated manner from the mouse MOp, to 
critically evaluate the robustness and reliability of the cell-type taxono-
mies obtained by clustering molecular datasets. Our cross-validation 
analysis of individual datasets and multimodal integration objectively 
constrains the range of cluster resolutions supported by the data with-
out overfitting. Rather than supporting a single, definitive number of 
cell types in the mouse MOp, our studies instead point to a range of 
cluster resolutions spanning from approximately 30 to 116 cell types 
that are supported by the data. Indeed, discrete cell-type categories 
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may be an inappropriate description at a fine-grained level of analysis, 
in which the molecular profiles of cells vary along a continuum.

By integrating nine large-scale single-cell transcriptomic and epig-
enomic datasets, we have comprehensively classified and annotated 
the diversity of cell types in the adult mouse MOp. Our study demon-
strates general procedures for objective cross-dataset comparison 
and statistical reproducibility analysis, as well as standards and best 
practices that can be adopted for future large-scale studies. Together 
with complementary BICCN datasets from spatial transcriptomics, 
connectivity and physiology, as well as cross-species comparative 
studies, our results help to establish a multifaceted understanding 
of brain cell diversity. Targeted studies of individual cell types, taking 
advantage of the transcriptional and epigenetic signatures described 
here, will define their functional roles and significance in the context 
of neural circuits and behaviour. Integrative analyses will be essential 
to make progress towards understanding the organizing principles 
of cell types in the brain through their molecular genetic signatures.
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Methods

Tissue collection and isolation of cells or nuclei (RNA-seq at the 
Allen Institute)
The following methods apply to the following transcriptomic datasets 
generated at the Allen Institute: scRNA SMART, scRNA 10x v3 A, scRNA 
10x v2 A, snRNA SMART, snRNA 10x v3 A and snRNA 10x v2 A.

Mouse breeding and husbandry. All procedures were carried out in 
accordance with the Institutional Animal Care and Use Committee pro-
tocols at the Allen Institute for Brain Science. Mice were provided food 
and water ad libitum and were maintained on a regular 12-h day/night 
cycle at no more than five adult mice per cage. Ambient temperature 
was set to 72 °F and relative humidity was set to 40%. All rooms were on 
12/12-h light/dark cycle. For this study, we enriched for neurons by using 
Snap25-IRES2-Cre mice41 (MGI: J:220523) crossed to Ai14 (ref. 42) (MGI: 
J:220523), which were maintained on the C57BL/6J background (RRID: 
IMSR_JAX:000664). Mice were euthanized at 53−59 days of postnatal 
age. Tissue was collected from both males and females (scRNA SMART, 
snRNA SMART, scRNA 10x v3 A and snRNA 10x v2 A), only males (scRNA 
10x v2 A) or only females (snRNA 10x v3 A).

Single-cell isolation. We isolated single cells by adapting previous-
ly described procedures3,43. The brain was dissected, submerged in 
artificial cerebrospinal fluid (ACSF)3, embedded in 2% agarose, and 
sliced into 250-μm (SMART-Seq) or 350-μm (10x Genomics) coronal 
sections on a Compresstome (Precisionary Instruments). The Allen 
Mouse Brain Common Coordinate Framework version 3 (CCFv3; RRID: 
SCR_002978)44 ontology was used to define the MOp for dissections 
(Extended Data Fig. 1b).

For SMART-Seq, the MOp was microdissected from the slices and 
dissociated into single cells with 1 mg/ml pronase (P6911-1G, Sigma) and 
processed as previously described3. For 10x Genomics, tissue pieces 
were digested with 30 U/ml papain (PAP2, Worthington) in ACSF for 
30 min at 30 °C. Enzymatic digestion was quenched by exchanging 
the papain solution three times with quenching buffer (ACSF with 1% 
FBS and 0.2% BSA). The tissue pieces in the quenching buffer were 
triturated through a fire-polished pipette with a 600-μm diameter 
opening approximately 20 times. The solution was allowed to settle 
and supernatant containing single cells was transferred to a new tube. 
Fresh quenching buffer was added to the settled tissue pieces, and 
trituration and supernatant transfer were repeated using 300-μm and 
150-μm fire-polished pipettes. The single-cell suspension was passed 
through a 70-μm filter into a 15-ml conical tube with 500 μl of high BSA 
buffer (ACSF with 1% FBS and 1% BSA) at the bottom to help cushion the 
cells during centrifugation at 100g in a swinging bucket centrifuge for 
10 min. The supernatant was discarded, and the cell pellet was resus-
pended in a quenching buffer.

All cells were collected by fluorescence-activated cell sorting (FACS; 
BD Aria II; RRID: SCR_018091) using a 130-μm nozzle. Cells were pre-
pared for sorting by passing the suspension through a 70-μm filter 
and adding DAPI (to the final concentration of 2 ng/ml). The sorting 
strategy was as previously described3, with most cells collected using 
the tdTomato-positive label. For SMART-Seq, single cells were sorted 
into individual wells of eight-well PCR strips containing lysis buffer from 
the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (634894, 
Takara) with RNase inhibitor (0.17 U/μl), immediately frozen on dry 
ice and stored at −80 °C. For 10x Genomics, 30,000 cells were sorted 
within 10 min into a tube containing 500 μl of quenching buffer. Each 
aliquot of 30,000 sorted cells was gently layered on top of 200 μl of 
high BSA buffer and immediately centrifuged at 230g for 10 min in a 
swinging bucket centrifuge. The supernatant was removed and 35 μl 
of buffer was left behind, in which the cell pellet was resuspended. The 
cell concentration was quantified and immediately loaded onto the 
10x Genomics Chromium controller.

Tissue collection and nuclei isolation (RNA-seq at the Broad 
Institute)
These methods apply to the snRNA 10x v3 B dataset, generated at the 
Broad Institute.

Animal housing. Mice were group housed with a 12-h light/dark sched-
ule and allowed to acclimate to their housing environment for 2 weeks 
after arrival. Ambient temperature was set to 70 ± 2 °F and relative 
humidity was set to 40 ± 10%. All rooms are on 12/12-h light/dark cy-
cle. All procedures involving animals at the Massachusetts Institute 
of Technology were conducted in accordance with the US National 
Institutes of Health Guide for the Care and Use of Laboratory Animals 
under protocol number 1115-111-18 and approved by the Massachusetts 
Institute of Technology Committee on Animal Care. All procedures 
involving animals at the Broad Institute were conducted in accordance 
with the US National Institutes of Health Guide for the Care and Use of 
Laboratory Animals under protocol number 0120-09-16. Samples were 
collected from both male and female mice.

Brain preparation before 10x nuclei sequencing. At 60 days of age, 
C57BL/6J mice were anaesthetized by administration of isoflurane in a 
gas chamber flowing 3% isoflurane for 1 min. Anaesthesia was confirmed 
by checking for a negative tail pinch response. Mice were moved to a 
dissection tray and anaesthesia was prolonged via a nose cone flowing 
3% isoflurane for the duration of the procedure. Transcardial perfu-
sions were performed with ice-cold pH 7.4 HEPES buffer containing 
110 mM NaCl, 10 mM HEPES, 25 mM glucose, 75 mM sucrose, 7.5 mM 
MgCl2 and 2.5 mM KCl to remove blood from the brain and other organs 
sampled. The brain was removed immediately and frozen for 3 min in 
liquid nitrogen vapour and moved to −80 °C for long-term storage. A 
detailed protocol is available at protocols.io15.

Generation of MOp nuclei profiles. Frozen mouse brains were securely 
mounted by the cerebellum onto cryostat chucks with OCT embedding 
compound such that the entire anterior half, including the MOp, was left 
exposed and thermally unperturbed. Dissection of 500-μm anterior–
posterior spans of the MOp (Extended Data Fig. 1c) was performed by 
hand in the cryostat using an ophthalmic microscalpel (P-715, Feather 
safety Razor) precooled to −20 °C and donning 4× surgical loupes. 
Each excised tissue dissectate was placed into a precooled 0.25-ml 
PCR tube using precooled forceps and stored at −80 °C. To assess dis-
section accuracy, 10-μm coronal sections were taken at each 500-μm 
anterior–posterior dissection junction and imaged following Nissl 
staining. Nuclei were extracted from these frozen tissue dissectates 
using gentle, detergent-based dissociation, according to a protocol45 
adapted from one generously provided by the McCarroll laboratory, 
and loaded into the 10x Chromium v3 system. Reverse transcription 
and library generation were performed according to the manufacturer’s 
protocol.

This 10x v3 snRNA-seq protocol resulted in a higher number of genes 
recovered than other snRNA-seq methods. We believe that there are 
three reasons for this, and that the summation of benefits imparted by 
the combination of these accounts for the outcome.

First, mouse brains were perfused with a solution emulating ACSF and 
then rapidly frozen over liquid nitrogen vapour in such a way that RNA 
integrity was highly preserved. The resulting bioanalyzer RIN scores 
of the starting brain tissues were routinely 9.8. Storage of the brains 
before dissection was at −80 °C in the presence of a hydration sink of 1 
ml of OCT compound pre-frozen into the bottom of a 5-ml storage tube. 
This prevents sublimation and subsequent desiccation-dependent 
RNA fragmentation.

Second, we performed expeditious sample processing. We have a 
well-trained group of technicians who processed the mouse brain (as 
above), and then perform the dissociation, FACS and 10x processing 
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(as below) in one continuous protocol without pauses. For example, 
each mouse was perfused and ready for dissection within minutes (10 
min), and we limited our sample size to six mice so that no sample was 
waiting to move through the process.

Third, the frozen tissue snRNA-seq protocol incorporates two main 
features that we believe are important to quality because they prevent 
the nuclei from ‘leaking’ valuable signal and simultaneously contami-
nating the barcoded nuclei mixture with exogenous RNA signal. The 
first feature was a very low level of centrifugation, which we have found 
to cause both loss of signal and increased exogenous signal. The second 
feature was the inclusion of an excipient reagent, BASF Kollidon VA-64, 
as per the McCarroll laboratory protocol46.

Tissue collection and isolation of nuclei for epigenomic samples
The following methods apply to the snmC-seq2 and snATAC-seq data-
sets generated at the Salk Institute and the University of California, 
San Diego.

Tissue preparation for nuclei production. Procedures involving 
animals at the Salk Institute were conducted in accordance with the 
US National Institutes of Health Guide for the Care and Use of Labora-
tory Animals under protocol number 18-00006 and approved by the 
Institutional Animal Care and Use Committee. Male C57BL/6J mice 
were purchased from Jackson laboratories at 8 weeks of age and main-
tained in the Salk animal barrier facility on 12-h dark/light cycles with 
controlled temperature (20–22 °C) and humidity (30–70%), and food 
ad libitum for 1 week before dissection.

Brains were extracted from 56 to 63-day-old mice and immediately 
sectioned into 0.6-mm coronal sections, starting at the frontal pole, 
in ice-cold dissection media9. The MOp was dissected from slices two 
to five along the anterior–posterior axis according to the Allen Brain 
reference Atlas (Extended Data Fig. 1d). Slices were kept in ice-cold 
dissection media during dissection and immediately frozen in dry ice 
for subsequent pooling and nuclei production. For nuclei isolation, 
dissected regions of the MOp from 15 to 23 mice were pooled for each 
biological replicate, and two replicates were processed for each region. 
Nuclei were isolated by flow cytometry as described in previous stud-
ies9,10. In brief, nuclei were produced by homogenization in sucrose 
buffer as previously described9, and the nuclei pellet produced was 
divided into two aliquots. One aliquot underwent sucrose gradient 
purification and NeuN labelling (snmC-seq2), and the second aliquot 
went directly to tagmentation (snATAC-seq).

Bisulfite conversion and library preparation for snmC-seq2. Detailed 
methods for bisulfite conversion and library preparation are previously 
described for snmC-seq2 (ref. 14), and the protocol is available on pro-
tocols.io47. The snmC-seq2 libraries were sequenced using an Illumina 
Novaseq 6000 instrument (RRID: SCR_016387) with S4 flowcells and 
150-bp paired-end mode.

snATAC-seq data generation. Combinatorial barcoding snATAC-seq 
was performed as previously described28,48. Isolated brain nuclei were 
pelleted with a swinging bucket centrifuge (500g for 5 min at 4 °C; 
5920R, Eppendorf). Nuclei pellets were resuspended in 1 ml nuclei per-
meabilization buffer (5% BSA, 0.2% IGEPAL-CA630, 1 mM dithiothreitol 
and cOmplete, EDTA-free protease inhibitor cocktail (Roche) in PBS) 
and pelleted again (500g for 5 min at 4 °C; 5920R, Eppendorf; RRID: 
SCR_018092). Nuclei were resuspended in 500 μl high-salt tagmenta-
tion buffer (36.3 mM Tris-acetate (pH 7.8), 72.6 mM potassium-acetate, 
11 mM Mg-acetate and 17.6% DMF) and counted using a haemocytom-
eter. Concentration was adjusted to 4,500 nuclei per 9 μl, and 4,500 nu-
clei were dispensed into each well of a 96-well plate. For tagmentation, 
1 μl of barcoded Tn5 transposomes48 were added using BenchSmart 96 
(Mettler Toledo; RRID: SCR_018093), mixed five times and incubated for 
60 min at 37 °C with shaking (500 r.p.m.). To inhibit the Tn5 reaction, 10 

μl of 40 mM EDTA was added to each well with BenchSmart 96 (Mettler 
Toledo) and the plate was incubated at 37 °C for 15 min with shaking 
(500 r.p.m.). Next, 20 μl 2× sort buffer (2% BSA and 2 mM EDTA in PBS) 
were added using BenchSmart 96 (Mettler Toledo). All wells were com-
bined into a FACS tube and stained with 3 μM Draq7 (Cell Signaling). 
Using a SH800 (Sony), 40 nuclei were sorted per well into eight 96-well 
plates (a total of 768 wells) containing 10.5 μl EB (25 pmol primer i7, 25 
pmol primer i5 and 200 ng BSA (Sigma)). Preparation of sort plates 
and all downstream pipetting steps were performed on a Biomek i7 
Automated Workstation (Beckman Coulter; RRID: SCR_018094). After 
the addition of 1 μl 0.2% SDS, samples were incubated at 55 °C for 7 min 
with shaking (500 r.p.m.). Triton-X (12.5%; 1 μl) was added to each well 
to quench the SDS. Next, 12.5 μl NEBNext High-Fidelity 2× PCR Master 
Mix (NEB) was added and samples were PCR-amplified (72 °C for 5 min, 
98 °C for 30 s (98 °C for 10 s, 63 °C for 30 s and 72 °C or 60 s) × 12 cycles, 
held at 12 °C). After PCR, all wells were combined. Libraries were puri-
fied according to the MinElute PCR Purification Kit manual (Qiagen) 
using a vacuum manifold (QIAvac 24 plus, Qiagen) and size selection 
was performed with SPRI Beads (0.55× and 1.5×; Beckmann Coulter). 
Libraries were purified one more time with SPRI Beads (1.5×, Beckmann 
Coulter). Libraries were quantified using a Qubit fluorimeter (Life Tech-
nologies; RRID: SCR_018095), and the nucleosomal pattern was verified 
using a Tapestation (High Sensitivity D1000, Agilent). The library was 
sequenced on a HiSeq2500 sequencer (Illumina; RRID: SCR_016383) 
using custom sequencing primers, 25% spike-in library and the follow-
ing read lengths: 50 + 43 + 37 + 50 (Read1 + Index1 + Index2 + Read2)11.

Genomic library preparation, sequencing and data processing
scRNA-seq and snRNA-seq (Allen Institute). For SMART-Seq process-
ing, we performed the procedures with positive and negative controls 
as previously described3. The SMART-Seq v4 Ultra Low Input RNA Kit 
for Sequencing (634894, Takara) was used to reverse transcribe poly(A) 
RNA and amplify full-length cDNA. Samples were amplified for 18 cy-
cles in eight-well strips, in sets of 12–24 strips at a time. All samples 
proceeded through Nextera XT DNA Library Preparation (FC-131-1096, 
Illumina) using Nextera XT Index Kit V2 (FC-131-2001, Illumina) and 
a custom index set (Integrated DNA Technologies). Nextera XT DNA 
Library preparation was performed according to the manufacturer’s 
instructions, with a modification to reduce the volumes of all reagents 
and cDNA input to 0.4× or 0.5× of the original protocol.

For 10x v2 processing, we used the Chromium Single Cell 3′ Rea-
gent Kit v2 (120237, 10x Genomics). We followed the manufacturer’s 
instructions for cell capture, barcoding, reverse transcription, cDNA 
amplification and library construction. We targeted a sequencing depth 
of 60,000 reads per cell.

For 10x v3 processing, we used the Chromium Single Cell 3′ Rea-
gent Kit v3 (1000075, 10x Genomics). We followed the manufacturer’s 
instructions for cell capture, barcoding, reverse transcription, cDNA 
amplification and library construction. We targeted a sequencing depth 
of 120,000 reads per cell.

RNA-seq data processing and quality control (Allen Institute). 
Processing of SMART-Seq v4 libraries was performed as previously 
described3. Briefly, libraries were sequenced on an Illumina HiSeq2500 
platform (paired-end with read lengths of 50 bp), and Illumina sequenc-
ing reads were aligned to GRCm38.p3 (mm10) using a RefSeq annota-
tion gff file retrieved from the NCBI on 18 January 2016 (https://www.
ncbi.nlm.nih.gov/genome/annotation_euk/all/). Sequence alignment 
was performed using STAR v2.5.349. PCR duplicates were masked and 
removed using STAR option ‘bamRemoveDuplicates’. Only uniquely 
aligned reads were used for gene quantification. Gene counts were com-
puted using the R GenomicAlignments package (RRID: SCR_018096)50 
and the summarizeOverlaps function in ‘IntersectionNotEmpty’ mode 
for exonic and intronic regions separately. For the SMART-Seq v4 data-
set, we only used exonic regions for gene quantification. Cells that 
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met any one of the following criteria were removed: <100,000 total 
reads, <1,000 detected genes (CPM > 0), <75% of reads aligned to the 
genome or CG dinucleotide odds ratio > 0.5. Cells were classified into 
broad classes of excitatory, inhibitory and non-neuronal based on 
known markers, and cells with ambiguous identities were removed 
as doublets3.

10x v2 and 10x v3 libraries were sequenced on Illumina NovaSeq 6000 
(RRID: SCR_016387), and sequencing reads were aligned to the mouse 
pre-mRNA reference transcriptome (mm10) using the 10x Genomics 
CellRanger pipeline (version 3.0.0; RRID: SCR_017344) with default 
parameters. Cells were classified into broad classes of excitatory, inhibi-
tory and non-neuronal based on known markers. Low-quality cells 
that fit the following criteria were filtered from clustering analysis. 
Different filtering criteria were used for neurons and non-neuronal 
cells as neurons are bigger than non-neuronal cells and contain more 
transcripts. For scRNA datasets, we excluded neurons with fewer than 
2,000 detected genes and non-neuronal cells with fewer than 1,000 
detected genes; for snRNA datasets, we excluded neurons with fewer 
than 1,000 detected genes and non-neuronal cells with fewer than 500 
detected genes. Doublets were identified using a modified version of 
the DoubletFinder algorithm51 and removed when the doublet score 
was greater than 0.3.

Chromatin accessibility (snATAC-seq) data pre-processing (UCSD). 
Paired-end sequencing reads were demultiplexed and aligned to the 
mm10 reference genome using bwa52. After alignment, we converted 
paired-end reads into fragments and for each fragment, we checked 
the following attributes: (1) mapping quality score MAPQ; (2) whether 
two ends are appropriately paired according to the alignment flag in-
formation; and (3) fragment length. We only keep the properly paired 
fragments whose MAPQ (–min-mapq) is greater than 30 with frag-
ment length less than 1,000 bp (–max-flen). Because the reads have 
been sorted based on the names, fragments belonging to the same cell  
(or barcode) are naturally grouped together, which allows for remov-
ing PCR duplicates. After alignment and filtration, we used Snaptools 
(https://github.com/r3fang/SnapTools; RRID: SCR_018097) to generate 
a snap-format file that contains metadata, cell-by-bin count matrices 
of various resolutions and cell-by-peak count matrices.

Filtering cells by transcription start site enrichment and unique 
fragments. The method for calculating enrichment at the tran-
scription start site (TSS) was adapted from a previously described  
method53. TSS positions were obtained from the GENCODE database 
(RRID: SCR_014966). Briefly, Tn5-corrected insertions were aggre-
gated ±2,000 bp relative (TSS strand-corrected) to each unique TSS 
genome-wide. Then, this profile was normalized to the mean acces-
sibility ±1,900–2,000 bp from the TSS and smoothed every 11 bp. The 
maximum of the smoothed profile was taken as the TSS enrichment. We 
excluded any single cells that had fewer than 1,000 unique fragments 
or a TSS enrichment of less than 10 for any sample sets.

Doublet removal. After filtering out low-quality nuclei, we used Scrub-
let (RRID: SCR_018098)54 to remove potential doublets for every sam-
ple set. Cell-by-peak count matrices were used as input, with default 
parameters.

Preprocessing of the DNA methylation (snmC-seq2) data  
(Salk Institute)
Mapping and feature count pipeline for snmC-seq2. We imple-
mented a versatile mapping pipeline (cemba-data.rtfd.io) for all the 
single-cell methylome-based technologies developed by our group9,14,30. 
The main steps of this pipeline included: (1) demultiplexing FASTQ files 
into single-cell files; (2) reads-level quality control; (3) mapping; (4) 
BAM file processing and quality control; and (5) final molecular pro-
file generation. The details of the five steps for snmC-seq2 have been 

previously described14. We mapped all the reads onto the mouse mm10 
genome. After mapping, we calculated the methyl-cytosine counts and 
the total cytosine counts in two sets of genome regions for each cell: the 
non-overlapping 100-kb bins tiling the mm10 genome, which was used 
for methylation-based clustering analysis, and gene body regions ± 2 kb, 
which was used for cluster annotation and cross-modality integration.

Quality control and cell filtering. We filtered the cells based on five 
quality metrics: (1) the rate of bisulfite non-conversion as estimated 
by the rate of methylation at CCC positions (mCCC) < 0.03 (the mCCC 
rate reliably estimates the upper bound of the bisulfite non-conversion 
rate9); (2) the overall mCG rate > 0.5; (3) the overall mCH rate < 0.2; (4) 
the total final reads (combining R1 and R2) > 500,000; and (5) the total 
mapping rate (using Bismark55) > 0.5.

Preprocessing and clustering. The clustering steps of snmC-seq2 
data were previously described30. In brief, we calculated the poste-
rior mCH and mCG rate based on beta-binomial distribution for the 
non-overlapping 100-kb bins matrix. We then selected the top 3,000 
highly variable features to perform principal components analysis 
(PCA) and find dominant principal components for mCH and mCG 
separately. We concatenate principal components from both methyla-
tion types together to construct a k-nearest neighbour (KNN) graph, 
and ran the Leiden community detection algorithm56 repeatedly to get 
the consensus clustering results. The stopping criteria of clustering 
considered the number of marker genes, the accuracy of the repro-
ducible supervised model based on the cluster assignments and the 
minimum cluster size. We performed the clustering in two iterations to 
get the major types and fine-grained types for comparison with other 
modalities in further integration.

Computational analysis
Estimation of library size. For estimate of library size, see Extended 
Data Fig. 1e. For each dataset, we estimated the total library size, that 
is, the number of unique RNA or DNA fragments (F), based on the rate 
of duplicate sequence reads. The number of unique mapped reads is 
N F S F F F= (1 − Bin[0| , 1/ ]) = [1 − (1 − 1/ ) ]S

unique , where S is the total num-
ber of sequenced reads. Using this equation, we numerically solved 
for F using the median values of S, Nunique.

Transcriptome analysis
Clustering individual datasets. For transcriptomic analysis, see Fig. 1. 
Clustering for each scRNA-seq and snRNA-seq dataset was performed 
independently using the R package scrattch.hicat3 (RRID: SCR_018099; 
available at https://github.com/AllenInstitute/scrattch.hicat). This 
package supports iterative clustering by making successively finer 
splits while ensuring all pairs of clusters, even at the finest level, are 
separable by stringent differential gene expression criteria3. For the 
scRNA 10x datasets, we used q1.th = 0.4, q.diff.th = 0.7, de.score.th = 150 
and min.cells = 10. For the snRNA 10x datasets, we used q1.th = 0.3, q.diff.
th = 0.7, de.score.th = 100 and min.cells = 10. For the scRNA SMART 
datasets, we used q1.th = 0.5, q.diff.th = 0.7, de.score.th = 150 and min.
cells = 4. For the snRNA SMART dataset, we used q1.th = 0.4, q.diff.
th = 0.7, de.score.th = 100 and min.cells = 4. We further performed 
consensus clustering by repeating iterative clustering on a subsample 
of 80% of cells, resampled 100 times, followed by final clustering based 
on the co-clustering probability matrix. Using this procedure, we could 
fine-tune cluster boundaries as well as assess cluster uncertainty.

Next, we removed low-quality and doublet-driven clusters. We per-
formed differential gene expression analysis between every pair of 
clusters within each subclass. If any cluster had ≤2 upregulated genes 
(fold change > 2, FDR < 0.01, with additional dataset-specific parameters 
listed in the previous paragraph) than another cluster, and had a sub-
stantially lower average number of detected genes per cell, we flagged 
the cluster as low quality and removed it from further analysis. Next, 

https://github.com/r3fang/SnapTools;%20RRID:%20SCR_018097
https://github.com/AllenInstitute/scrattch.hicat


Article
if the upregulated genes between any two clusters within a subclass 
were predominantly marker genes for a different subclass, and one 
of the clusters had a significantly higher average of genes detected 
per cell and UMI count, we flagged the cluster as a potential doublet 
cluster and removed it from further analysis. These criteria led to the 
exclusion of 8.3% of all cells, the vast majority of which came from the 
two 10x v3 datasets (scRNA 10x v3 A and snRNA 10x v3 B). While the 
10x v3 platform boosts the gene detection for good cells, it does the 
same to damaged cells or debris, leading to an increased number of 
clusters that were excluded for these datasets.

Joint clustering of multiple transcriptome datasets. To provide a 
consensus cell-type taxonomy across all transcriptomic datasets, we 
developed an integrative clustering analysis across multiple data mo-
dalities. This procedure is available via the harmonize function of the 
scrattch.hicat package. Unlike Seurat/CCA57, which aims to find aligned 
common reduced dimensions across multiple datasets, this method 
directly builds a common adjacency graph using the cells from all data-
sets, and then applies the Louvain community detection algorithm58. We 
extended the cluster merging algorithm in the scrattch.hicat package 
to ensure that all clusters can be separated by conserved differentially 
expressed genes across platforms. The i_harmonize function, similar to 
the iter_clust function in the single-dataset clustering pipeline, applies 
integrative clustering across datasets iteratively while ensuring that all 
the clusters at each iteration are separable by conserved differentially 
expressed genes.

To build a common adjacency matrix incorporating samples from 
all the datasets, we first chose a subset of datasets that we used as ‘ref-
erence datasets’. For this study, we used the 10x v2 single-cell dataset 
from the Allen Institute (scRNA 10x v2 A) and the 10x v3 single-nucleus 
dataset from the Broad Institute (snRNA 10x v3 B) as the reference data-
sets, as both are large datasets that provide comprehensive cell-type 
coverage and relatively sensitive gene detection.

The key steps of the pipeline are outlined: (1) perform single-dataset 
clustering (Methods described above). (2) Select the anchor cells for 
each reference dataset. For each reference dataset (scRNA 10x v2 A or 
snRNA 10x v3 B), we randomly sampled up to ( )max 100, 5, 000

no.ofclusters
 

anchor cells per cluster to normalize coverage for each cell type. This 
is the only step that uses the dataset-specific clustering information. 
(3) Select highly variable genes. Highly variable gene selection and 
dimensionality reduction by PCA were performed using the scrattch.
hicat package. We removed principal components with a Pearson cor-
relation coefficient of more than 0.7 with log2(Ngenes). This step was 
implemented to mitigate the effect of cell or nucleus quality on gene 
expression variability, and to select only biologically relevant principal 
components. For each remaining principal component, Z-scores were 
calculated for gene loadings. The top 100 genes with an absolute Z-score 
greater than 2 were selected as highly variable genes. The highly vari-
able genes from each reference dataset were combined. (4) Compute 
KNNs. For each cell in each query dataset, we computed its KNNs (k = 15) 
among anchor cells in each reference dataset (scRNA 10x v2 A or snRNA 
10x v3 B), based on the highly variable genes selected above. The RANN 
package was used to compute KNN based on the Euclidean distance 
when the query and reference dataset was the same. To compute near-
est neighbours across datasets, we used correlation as a similarity 
metric. (5) Compute the Jaccard similarity. For every pair of cells from 
all datasets, we computed their Jaccard similarity, defined as the ratio 
of the number of shared KNNs (among all anchors cells from all the 
reference datasets) divided by the number of combined KNNs. (6) 
Perform Louvain clustering. (7) Merge clusters. To ensure that every 
pair of clusters are separable by conserved differentially expressed 
genes across all datasets, for each cluster, we first identified the top 
three most similar clusters. For each pair of such closely related clusters, 
we computed the differentially expressed genes in each dataset. We 
focus on the conserved differentially expressed genes that are 

significant in at least one dataset, while also having more than twofold 
change in the same direction in all but one datasets. We then computed 
the overall statistical significance based on such conserved differen-
tially expressed genes for each dataset independently. If any of the 
datasets passed our differentially expressed gene criteria described 
in the ‘clustering’ section, the pair of clusters remained separated; 
otherwise they were merged. Differentially expressed genes were rec-
omputed for the merged clusters, and the process was repeated until 
all clusters were separable by the conserved differentially expressed 
genes criteria. If one cluster had fewer than the minimal number of 
cells in a dataset (4 cells for SMART-Seq and 10 cells for 10x), then this 
dataset was not used for differentially expressed gene computation 
for all pairs involving the given cluster. This step allows detection of 
unique clusters absent in some platforms. (8) Iterative clustering. 
Repeat steps 1–6 for cells within each cluster to gain finer-resolution 
clusters until no more clusters can be found. (9) Final compilation and 
merging of clusters. Concatenate all the clusters from all of the iterative 
clustering steps and perform the final merging as described in step 6.

Marker gene selection. For each pair of clusters, we computed the 
conserved differentially expressed genes, that is, those which are sig-
nificantly differentially expressed in at least one dataset, with a twofold 
or more change in expression in the same direction among 70% of data-
sets. To allow computation of differentially expressed genes involving 
cell types only present in a subset of datasets, only the datasets with 
enough cells (based on min.cells parameter) for both cell types under 
comparison were used. We selected the top 50 genes in each direction. 
After pooling genes from all pairwise comparisons, we identified a total 
of 3,792 marker genes (Supplementary Table 6).

Imputation. To facilitate direct comparison, we projected gene expres-
sion of all datasets to the space of a given reference dataset. To do that, 
we leveraged the KNN matrices computed during the iterative joint 
clustering step to adjust the expression values for systematic differ-
ences between datasets. During each iteration of the joint clustering, for 
cells in each dataset, we used the average gene expression of their KNNs 
among the anchor cells from the reference dataset as the adjusted ex-
pression in the reference space. At the top-level clustering, we imputed 
the expression for all genes. For each subsequent iteration, we only 
imputed the expression of the high-variance genes and the conserved 
differentially expressed genes for the clusters defined in that iteration. 
We used this iterative approach for imputation because the nearest 
neighbours based on the genes chosen at the top level may not reflect 
the distinction between the finer types, and the imputed values for the 
differentially expressed genes that define the finer types consequently 
are not accurate based on these nearest neighbours. Therefore, we 
deferred imputation of the differentially expressed genes between the 
finer types to the iteration when these types were defined. This method 
is provided in the impute_knn_global function in the scrattch.hicat 
package3. We imputed the gene expression matrix for both reference 
datasets used in the integrative clustering.

Building a cell-type taxonomy tree. We first computed the average 
adjusted expression of marker genes for each cluster. This average 
was computed using each of the two reference datasets (scRNA 10x 
v2 A and snRNA 10x v3 B). Then, the two matrices were concatenated. 
We constructed a hierarchy (tree) using the build_dend_harmonize 
function in the scrattch.hicat package3.

Dimensionality reduction by UMAP. We performed PCA based on 
imputed gene expression matrices of 3,792 marker genes using the 10x 
single-nucleus dataset from the Broad Institute as the reference, and 
selected the top 50 principal components (93% variance explained). 
We removed principal components with Pearson correlation coeffi-
cient > 0.6 with the log2(Ngenes) to reduce bias related to the number of 



detected genes. UMAP was used to embed the cells in two dimensions 
with parameters nn.neighbours = 25 and md = 0.3 (ref. 40).

MetaNeighbor analysis
For the MetaNeighbor analysis, see Fig. 1g. To quantify replicability of 
clusters across the seven transcriptomic datasets, we applied a modi-
fied version of unsupervised MetaNeighbor (RRID: SCR_016727)24. 
MetaNeighbor uses a neighbour voting algorithm and a cross-dataset 
validation scheme to quantify cluster similarity across multiple data-
sets. It requires a set of unnormalized datasets, a set of cluster labels 
and a set of highly variable genes. We used the raw count data for all 
cells passing the quality control criteria for the seven single-cell tran-
scriptomic datasets, as well as the labels obtained through independ-
ent clustering (Supplementary Table 5). We used the variableGenes 
procedure in MetaNeighbor to select 310 highly variable genes that 
were detected as highly variable across all datasets.

We defined replicable clusters in a two-step procedure: first, we quan-
tified the similarity between clusters across datasets, then we extracted 
groups of highly similar clusters, or ‘meta-clusters’. We used the Meta-
NeighborUS function to obtain an initial similarity matrix between clus-
ters. By default, cluster similarity is quantified as a one-vs-all AUROC: 
given a training cluster (in one dataset), we asked how similar cells from 
a test cluster (in another dataset) were to training cells, compared to all 
other cells in the test dataset. To make cluster matching more stringent, 
we transformed the one-vs-all AUROC matrix into a one-vs-best AUROC 
matrix: instead of ranking test cells among all cells from the test dataset, 
we only compared them to cells from the best-matching cluster. This 
modification ensured that only the best match had an AUROC > 0.5, 
facilitating identification of reciprocal best hits. For interpretability 
and computational efficiency, we adopted the following convention: 
the best-matching AUROC of a cluster was obtained by comparing 
it to the second best-matching cluster, the second best AUROC of a 
cluster was obtained by computing 1 − AUROC of the best-matching 
cluster, and all other clusters obtained an AUROC of 0, as we were only 
interested in finding best matches. To extract meta-clusters, we inter-
preted the one-vs-best AUROC as a graph where nodes are clusters 
and edges connect nodes if they are reciprocal best hits. We define 
meta-clusters as connected components in this graph. We can obtain 
more robust meta-clusters by requiring that best hits exceed some 
AUROC threshold. In practice, we noted that one-vs-best AUROC > 0.7  
offered a good balance between the number of meta-clusters and 
reproducibility strength.

For scalability, we modified MetaNeighbor in the following ways. In 
the MetaNeighborUS function, we removed the rank standardization of 
the cell–cell similarity network (by setting the parameter fast_version 
to TRUE) and the node degree normalization of the neighbour voting, 
enabling analytical simplifications of the neighbour voting procedure. 
The variableGenes procedure was applied to a random subset of 50,000 
cells for datasets exceeding that size.

MetaNeighbor analysis further allowed us to examine the consist-
ency of computational clustering procedures (Fig. 1h). We ran three 
widely used single-cell analysis packages25–27 to generate a fine-grained 
clustering of each dataset. These cluster analyses were not optimized or 
manually curated; instead, we used ‘off-the-shelf’ computational pro-
cedures to test the robustness of the results from a relatively straight-
forward and automated analysis. These clusters are thus expected 
to be less biologically meaningful and robust than more customized 
procedures, such as our reference clustering that incorporates analysis 
of differential expression to validate the biological reality of cell types. 
Using the three off-the-shelf cluster analyses, we created a sequence 
of increasingly coarse-grained clusterings by iteratively merging pairs 
of clusters chosen to maximize the consistency across computational 
methods (ARI-merging). Finally, at each level of resolution, we used 
MetaNeighbor to calculate the number of clusters that were highly 
replicable (AUROC > 0.7) across datasets. The result of this analysis 

showed that fine partitions of the data with more than 30–50 clusters 
have limited replicability.

Cluster analysis for snmC-seq2. For cluster analysis for snmC-seq2, 
see Extended Data Fig. 6a, b. We concatenated principal components 
from both methylation types (CG and CH) together, and used these to 
construct a KNN graph followed by Leiden community detection56. We 
repeated the cluster analysis several times to get consensus clustering 
results. The stopping criteria of clustering considered the number of 
marker genes, the accuracy of the reproducible supervised model 
based on the cluster assignments and the minimum cluster size. We 
performed the clustering in two iterations to get major types and 
fine-grained cell types for comparison with other modalities in fur-
ther integration.

Two-dimensional embedding using t-distributed stochastic neigh-
bour embedding59 (t-SNE; perplexity = 30) was calculated based on 
the top principal components using the implementation from the 
scanpy package60.

Cluster analysis for snATAC-seq. For cluster analysis for snATAC-seq, 
see Extended Data Fig. 6c, d. We used the snapATAC pipeline48 to iden-
tify cell clusters with binarized cell-by-bin matrix in 5-kb resolution as 
the input. Cell clusters were annotated to cell type by checking chro-
matin accessibility along the body of marker genes. Then, another 
round of clustering was performed on medial ganglionic eminence 
(MGE)-derived and caudal ganglionic eminence (CGE)-derived inhibi-
tory GABAergic interneurons, to identify sub-cell types.

Multimodality integration
For multimodality integration, see Fig. 2.

Computational data integration with LIGER. We used LIGER (RRID: 
SCR_018100) to integrate the single-cell transcriptomic and epigenom-
ic data as previously described29, with one modification. We used the 
optimizeALS function in the LIGER package to perform joint factoriza-
tion on all datasets except methylation (seven RNA datasets and one 
ATAC dataset) to infer shared (W) and dataset-specific (Vi) metagene 
factors and cell factor loadings (Hi). We then used the resulting W to 
calculate cell factor loadings (Hi) for the methylation data using the 
solveNNLS function in the LIGER package. We found that this strategy 
yielded better integration than jointly factorizing all eight datasets, 
possibly because the inverse relationship and massive size imbalance 
of datasets between methylation and all other datasets complicates 
the learning of shared metagenes. Our analysis used only the cells an-
notated by each data-generating group as passing quality control. 
We did not perform any data imputation or smoothing, but simply 
normalized and scaled the raw cell-by-gene count matrices from each 
dataset using the normalize and scaleNotCenter functions in the LIGER 
package. We next used the quantileAlignSNF function with default 
settings to perform quantile normalization of cell factor matrices (Hi) 
from all eight datasets. Finally, we performed Louvain clustering on 
the normalized cell factor matrices (Hi) to obtain joint clusters. We 
performed two rounds of integration and joint clustering; in the first 
round, we separately integrated all neurons across datasets and all 
glia across datasets. We then performed a second round of integration 
and clustering separately for each of the four neuronal subclasses: 
excitatory IT neurons, excitatory non-IT neurons, MGE interneurons 
and CGE interneurons. We used k = 40 factors for the non-neuron analy-
sis, k = 30 for the first-round neuron analysis and k = 20 for all of the 
second-round analyses.

Computational integration with SingleCellFusion. SingleCellFu-
sion30 is designed to robustly integrate DNA methylation, ATAC-seq and/
or RNA-seq data. We applied SingleCellFusion iteratively to integrate 
all neurons from eight datasets (Supplementary Table 1) and jointly call 
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cell clusters. To integrate both the broad and fine-grained cell types, 
we performed three rounds of integration. For every cell cluster gener-
ated in the previous round, it was further split into smaller clusters by 
reapplying SCF on cells in that cluster only. In the first round, we ran 
SCF on all neurons from 8 datasets and got 10 broad neuronal clusters. 
Rounds two and three generates 29 clusters and 56 more fine-grained 
clusters, respectively (Supplementary Table 3).

The procedure comprised four major steps: preprocessing, 
within-modality smoothing, cross-modality imputation, and clus-
tering and visualization. (1) For the preprocessing step, we defined a 
gene-by-cell feature matrix for each dataset. Droplet-based RNA-seq 
features (10x) were log10(CPM + 1) normalized; full-length RNA-seq 
(SMART-Seq) features were log10(TPM + 1) normalized. snATAC-seq 
data were represented by read counts within the gene body, normal-
ized by log10(RPM + 1), where CPM stands for counts per million reads 
mapped (counts normalized), TPM stands for transcripts per million 
reads mapped (length normalized) and RPM stands for reads per million 
reads mapped (length normalized), respectively. DNA methylation data 
are represented by the mean gene body mCH level, normalized by the 
global (genome-wide) mean mCH level for each cell. For each dataset, 
we only used high-quality cells (passed quality control) and highly 
variable genes (n = 4,000–6,300) for further analysis. To select highly 
variable genes, for RNA-seq and ATAC-seq datasets, we first removed 
genes that were expressed in fewer than 1% of cells. We then divided the 
remaining genes into 10 bins according to their mean expression across 
cells (CPM). For each bin, except for the one with the most expression, 
we selected the top 30% of genes with the most expression dispersion 
(variance/mean) as the highly variable genes. For the DNA methylation 
dataset, we first selected genes that had more than 20 cytosine cover-
age in more than 95% of cells, then divided the remaining genes into 10 
bins according to their mean normalized mCH level – raw mCH level 
normalized by the global mCH for each cell. For each bin, we selected 
the top 30% of genes with the most variance as the highly variable genes. 
(2) For the within-modality smoothing step, to reduce the sparsity and 
noise of feature matrices, we shared information among cells with 
similar profiles using data diffusion. The procedure is adapted from 
ref. 61 and described in detail in ref. 30. Here we exactly followed ref. 30 
with [ndim = 50, k = 30, ka = 5] for all datasets, and [P = 0.7] for RNA-seq 
datasets, [P = 0.9] for the DNA methylation dataset and [P = 0.1] for the 
ATAC-seq dataset. (3) For the cross-modality imputation by restricted 
k-partners (RKP) step, to integrate all eight datasets, we impute the 
scRNA 10x v2 A gene features for cells in all seven other datasets. The 
imputation was done pairwise between the scRNA 10x v2 A dataset 
and each of the other datasets. For each pairwise imputation, we fol-
lowed the procedure described in ref. 30 with 20 RKP and relaxation 
parameter 3 [k = 20, z = 3]. Instead of using Euclidean distance in a 
low-dimensional space, we used the (flipped) Spearman correlation 
coefficient across genes that were highly variable in both datasets as 
the distance metric between cells in two different modalities. (4) For 
the clustering and visualization step, we started from a cell-by-feature 
matrix, where cells included all cells from eight datasets and features 
were highly variable genes of the scRNA 10x v2 A dataset. We reduced 
the dimensionality of features into the top 50 principal components. 
Next, we performed UMAP embedding40 on the principal component 
matrix (n_neighbours = 60, min_dist = 0.5). Finally, we performed Leiden 
clustering on the KNN graph (symmetrized, unweighted) generated 
from the final principal component matrix (Euclidean distance, k = 30, 
resolution = 0.1).

For Extended Data Fig. 7e, we created the embedding of the cluster 
centroids using the imputed scRNA 10x v2 A gene features (log10(CPM 
+ 1)) for all cells from the eight different datasets generated from Sin-
gleCellFusion integration. Clusters are defined by individual dataset 
clusterings and by the joint clustering with SingleCellFusion. Cluster 
centroids were calculated by the mean imputed scRNA 10x v2 A gene 
profiles across cells. After getting a gene-by-cluster matrix, we applied 

PCA to reduce to 50 feature dimensions, followed by applying a UMAP 
embedding with min_dist = 0.7 and n_neighbours = 10.

For Fig. 2e, to compare molecular signals across data modalities, 
all signals were normalized to [0, 1]. This was achieved by first getting 
molecular signals by dataset-specific normalization (step 1), followed 
by a linear transformation (step 2). In step 1, for SMART-Seq datasets, we 
show log10(TPM + 1); for 10x RNA-seq datasets, we show log10(CPM + 1);  
for the ATAC-seq dataset, we show log10(RPM + 1) normalized gene body 
counts; and for DNA methylation, we show gene body mCH normalized 
by global mCH level of each cell. For step 2, we applied a linear trans-
formation to map the range of the signal to [0, 1]. For datasets other 
than DNA methylation, we applied the following formula:
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where x is the dataset-specific gene-level signal for a cell, xmin and xmax 
are defined as the bottom two percentile and the top two percentile of 
x across all cells, respectively. For the DNA methylation dataset, we 
applied the following formula:
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with which signals were still mapped to [0, 1] but flipped—a high signal 
on the plot means a low level of DNA methylation. We did this to align 
DNA methylation signals with gene expression and open chromatin 
signals, because DNA methylation is a repressive marker of gene expres-
sion and negatively correlates with it. In these formulas, xmin and xmax 
are defined as the bottom 2 percentile and the top 50 percentile of x 
across all cells, respectively.

For Fig. 2d, for each gene, cell-level signals were normalized the same 
way as described in step 1 of Fig. 2e. Cluster-level signals are the mean 
cell-level signals across cells in clusters. After getting gene-by-cluster 
matrices this way, for non-DNA methylation datasets, the matrices 
were further normalized by the maximum of each cluster (column); 
for DNA methylation datasets, no further normalization was done, as 
they were already normalized by cell.

For Extended Data Fig. 7g, h, the heat maps show pairwise Spearman 
correlation coefficients between the centroids of cells from each cell 
type (SingleCellFusion) and each dataset, using the gene expression 
levels (log10(CPM + 1); measured or imputed by SingleCellFusion) of 
the scRNA 10x v2 A dataset as features. Centroid-level profiles were 
computed as the average of cell-level profiles across cells from the same 
cell type and the same dataset. The row and column orderings were 
the same, generated by a hierarchical clustering on the above-defined 
centroid-level features with average linkage and Euclidean distance. 
Extended Data Fig. 7g shows the correlations between broad-level 
joint clusterings (10 subclasses; SingleCellFusion L0) (Supplementary 
Table 8); Extended Data Fig. 7h shows those between fine-level joint 
clusterings (56 clusters in total; not all are shown; SingleCellFusion 
L2) (Supplementary Table 8) for four example broad-level subclasses 
(MGE, CGE, L2/3 IT and L4/5 IT).

For the agreement metric in Extended Data Fig. 7c, we calculated 
dataset agreement metrics as described in the LIGER paper29. In brief, 
we performed dimensionality reduction using either non-negative 
matrix factorization (NMF; for LIGER) or PCA (for SingleCellFusion) 
and built a KNN graph for each individual dataset. Then, we built a KNN 
graph using the joint latent space from either LIGER or SingleCellFusion 
and calculated what fraction of the nearest neighbours from individual 
datasets were still nearest neighbours in the joint space. This metric 
assesses how well the joint latent space preserves the structure of each 
individual dataset. An agreement metric close to 0 indicates poor pres-
ervation of structure from individual datasets, while an agreement 
metric close to 1 ideally preserves the structure.



For the alignment metric in Extended Data Fig. 7d, we calculated 
dataset alignment metrics as described in the LIGER29 and Seurat57 
papers, except that we first downsampled cells so that the cluster pro-
portions and the total number of cells were identical across all datasets. 
Next, we built a KNN graph using the joint latent space from either 
LIGER or SingleCellFusion and calculated what fraction of the near-
est neighbours around each point came from each dataset. We then 
normalized the metric to be between 0 (no alignment) and 1 (perfect 
mixing of datasets). This metric assesses how well the joint latent space 
aligns the datasets. Note that maximizing alignment and maximizing 
agreement are competing objectives. For example, it is possible to 
trivially maximize alignment by randomly mixing cells from all datasets 
according to a spherical Gaussian distribution; conversely, one could 
trivially maximize agreement by simply assigning non-overlapping 
latent representations to all datasets. However, methods must bal-
ance these competing objectives to score highly on both alignment 
and agreement metrics.

For Extended Data Fig. 7f, to get cluster-level gene signals, we first got 
normalized cell-level signals the same way as step 1 of Fig. 2e, followed 
by taking the mean cell-level signals across cells in clusters.

Analysis of enhancers
Epigenome cluster level. On the basis of the cell–cell integration in 
Fig. 2, to have enough whole-genome coverage of each cell type, we 
further merged the co-clusters into a higher level to increase the cover-
age of each cluster, which we termed as the epigenome cluster level.

DMR calling. For DMR calling in the snmC-seq2 data, we merged 
single-cell ALLC files into the pseudo-bulk level for each cluster, and 
then used the methylpy62 DMRfind function to calculate mCG DMRs 
across all clusters. The base call of each paired CpG site was added up be-
fore analysis. In brief, the methylpy function used a permutation-based 
root mean square test of goodness-of-fit to identify differentially meth-
ylated sites simultaneously across all samples, and then merged the 
differentially methylated sites within 250 bp into DMRs. Hypo-DMRs 
and hyper-DMRs were then assigned to each sample by examining 
the residue of observed counts from the expected counts. We also 
filtered the DMRs by requiring that the maximum difference of mCG 
rate between clusters was larger than 0.3.

snATAC peak calling. We called peaks according to the ENCODE 
ATAC-seq pipeline (https://www.encodeproject.org/atac-seq/). For 
every cell cluster, we combined all properly paired reads to generate 
a pseudo-bulk ATAC-seq dataset for individual biological replicates. In 
addition, we generated two pseudo-replicates, each of which included 
half of the reads from each biological replicate. We called peaks inde-
pendently for each of these four datasets, as well as for a pool of the 
data from both biological replicates. Peak calling was performed on the 
Tn5-corrected single-base insertions using MACS263 (RRID: SCR_013291) 
with parameters: –shift −75–extsize 150–nomodel–call-summits–
SPMR–keep-dup all −q 0.01. We extended peak summits by 250 bp 
on either side to a final width of 501 bp for merging and downstream 
analysis. To generate a list of reproducible peaks, we kept peaks that 
(1) were detected in the pooled dataset and overlapped 50% or more of 
the peak length with a peak in both individual biological replicates, or 
(2) were detected in the pooled dataset and overlapped 50% or more 
of the peak length with a peak in both pseudo-replicates.

To account for differences in performance of MACS2 based on read 
depth and/or the number of nuclei in individual clusters, we converted 
MACS2 peak scores (−log10(q value)) to score per million (SPM)64 and 
kept peaks with SPM > 2. We only kept reproducible peaks on chromo-
somes 1–19 and both sex chromosomes, and filtered ENCODE mm10 
blacklist regions65 (http://mitra.stanford.edu/kundaje/akundaje/
release/blacklists/mm10-mouse/mm10.blacklist.bed.gz). Finally, since 
snATAC-seq data are relatively sparse, we selected only elements that 

were identified as open chromatin in a significant fraction of the cells 
in each cluster. To this end, we defined a set of background regions, 
matching the number of peak regions for each cell type, by randomly 
selecting regions from the genome while excluding accessible sites 
from the ENCODE registry of cis-regulatory elements (https://screen.
encodeproject.org/). We calculated the fraction of nuclei for each cell 
type that had ATAC fragments mapping to the background regions. 
Next, we fitted a zero-inflated beta model and empirically identified 
a significance threshold of FDR < 0.01 to filter potential false-positive 
peaks. Peak regions with FDR < 0.01 in at least one of the clusters were 
included in the downstream analysis.

We used ‘bedtools intersect’ with the ‘-wa -u’ parameter to calculate 
DMR and ATAC peak overlaps66 (RRID: SCR_006646).

Saturation analysis. To investigate the efficiency of regulatory ele-
ment identification in terms of cell number in the epigenomic data, 
we did a saturation analysis using the two most abundant cell types: 
the L2/3 IT and the L6 CT excitatory neurons. The total reads assigned 
to these two cell types were comparable to bulk-seq. We subsampled 
a different number of cells without replacement in each cluster three 
times when we had enough cells, and used cells from each replicate 
separately when possible. In the last group, we used all of the cells for 
each cell type as a maximum reference. For methylome data, we called 
DMRs between L2/3 IT and L6 CT within each cell number group. Peaks 
were called for each cell-type group.

REPTILE enhancer prediction. We performed enhancer prediction 
using the REPTILE35 algorithm. The REPTILE is a random-forest-based 
supervised method that incorporates different sources of epigenom-
ic profiles with base-level DNA methylation data to learn and then 
distinguish the epigenomic signatures of enhancers and genomic 
background. We trained the model in a similar way as in previous 
studies35,67 using CG methylation, chromatin accessibility of each 
epigenome cluster and mouse embryonic stem cells. The model was 
first trained on mouse embryonic stem cell data and then predicted 
a quantitative score that we termed enhancer score for the DMR of 
each cell type. The positives were 2-kb regions centred at the summits 
of the top 5,000 EP300 peaks in mouse embryonic stem cells. Nega-
tives included randomly chosen 5,000 promoters and 30,000 2-kb  
genomic bins. The bins have no overlap with any positives or promot-
ers67. Methylation and chromatin accessibility profiles in bigwig format 
for mouse embryonic stem cells were from the mouse ENCODE pro-
ject67. The mCG rate bigwig file was generated from cell-type-merged 
ALLC files using the software ALLCOOLS (https://lhqing.github.io/
ALLCools). For chromatin accessibility of each cell type, we merged 
all fragments from snATAC-seq cells that were assigned to this cell 
type in the integration analysis and used ‘deeptools bamcoverage’ to 
generate CPM-normalized bigwig files. The bin size for all bigwig files  
was 50 bp.

Motif enrichment analysis. We used 724 motif position weight ma-
trices (PWMs) from the JASPAR 2020 CORE vertebrates database68, 
where each motif was able to assign corresponding mouse transcrip-
tion factor genes. For each set of REPTILE-predicted enhancers, we 
standardized the region length into centre ± 250 bp and used the FIMO 
tool from the MEME suite69 to scan the motifs in each enhancer with log 
odds P value < 10−6 as the threshold of the motif hit. To calculate motif 
enrichment, we used the adult non-neuronal mouse tissue DMRs70 as 
background regions. We subtracted enhancers in the region set from 
the background and then scanned the motifs in background regions 
using the same approach. We then used Fisher’s exact test to find motifs 
enriched in the region set and the Benjamini–Hochberg procedure to 
correct multiple tests. Transcription factors with significant motif 
enrichment were grouped by TFClass71 classification. Genes within the 
same group shared very similar motifs.

https://www.encodeproject.org/atac-seq/
http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-mouse/mm10.blacklist.bed.gz
http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-mouse/mm10.blacklist.bed.gz
https://screen.encodeproject.org/
https://screen.encodeproject.org/
https://lhqing.github.io/ALLCools
https://lhqing.github.io/ALLCools
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Cluster validation analysis
For cluster validation analysis, see Fig. 4.

Downsampling analysis of cluster number. For downsampling analy-
sis of cluster number, see Fig. 4a–d.

Preprocessing was done in the same way as described in the section 
’Computational integration with SingleCellFusion’. After preprocess-
ing, we obtained a gene-by-cell feature matrix for each dataset. Only 
neuronal cells passing quality control (Supplementary Table 1) and 
highly variable genes for each dataset were included.

Clustering. Clustering (Fig. 4a) required three steps. We first reduced 
feature dimensions by PCA (n = 50). We then built a KNN graph (k = 30) 
between cells using the Euclidean distance in the principal compo-
nent space. We finally applied the Leiden clustering algorithm with 
a fixed-resolution parameter (r = 6). For each dataset, we report the 
number of clusters as a function of the number of cells randomly down-
sampled from the full dataset. Error bars show the s.e.m. of (n = 10) 
rounds of downsampling.

Clustering with within-dataset cross-validation. This analysis 
(Fig. 4c) aimed to estimate the optimal number of clusters of a dataset, 
by testing which clustering granularity best preserves the gene-level 
features of cells. For a given dataset, a gene-by-cell matrix, we first 
randomly split gene features into two sets, for clustering and valida-
tion, respectively. To avoid any potential linkage, the split was done 
by separating chromosomes into two sets, such that genes from the 
same chromosomes were always in the same set. We then performed 
Leiden clustering (as described in the methods related to Fig. 4a) on 
all cells using the clustering feature set only, with different cluster-
ing resolutions. After clustering, every cell in the dataset received a 
cluster label. We next randomly separated those cells into training and 
testing sets. Using training-set cells, we trained a supervised model 
to predict the validation set gene features based on cluster assign-
ments. The model was trained by minimizing the MSE between the 
model prediction and the data. This is equivalent to predicting the 
gene features of a cell as its cluster centroid. Finally, we evaluated the 
model performance by calculating the MSE for the cells in the test set. 
This is equivalent to estimating the mean squared distance between 
individual cells in the test set and the cluster centroid calculated using 
the training set. As a function of the number of clusters (by varying the 
resolution parameter in Leiden clustering), we observed a U-shaped 
curve of the MSE. The minimum point of the curve represents the most 
plausible clustering resolution. Applying this scheme to each dataset 
and different downsampling levels of cells, we report in Fig. 4c the num-
ber of clusters as a function of the number of cells, for each dataset. 
For robustness, random splitting of gene features was repeated n = 5 
times; random splitting of cells was repeated n = 5 times with k = 5-fold 
cross-validation each time.

Clustering with cross-dataset cross-validation. Extending the 
within-dataset clustering cross-validation scheme used in Fig. 4c, 
we developed a cross-dataset cross-validation method (Fig. 4d), by 
combining the previously described within-dataset cross-validation 
method with a joint clustering method: SingleCellFusion. First, similar 
to within-dataset cross-validation, we randomly split gene features 
into clustering and validation sets for all datasets. We then generated 
integrated clusterings across data modalities by applying SingleCell-
Fusion on all cells and on half of the gene features (the clustering fea-
ture set). After clustering, we estimated the MSE of clustering on the 
validation feature set as described above for each dataset on its own. 
Applying this scheme to different downsampling levels of cells, we 
report in Fig. 4d the number of clusters as a function of the number of 
cells from each dataset.

Integrated analyses: trade-off between replicability and resolution 
and cluster consistency. For integrated analyses, see Fig. 4e, f. We col-
lected the clusters obtained with the four integrative clustering meth-
ods described previously (Conos, LIGER, RNA consensus clustering 
from Fig. 1 and SingleCellFusion), as well as the ‘subclass’ level from the 
independent clustering of the RNA datasets. Each integrative method 
returned clusters at two granularity levels. We named the coarser level 
of clustering L1 and the finer level of clustering L2 clusters. We focused 
our analyses on the neuron clusters of the transcriptomic data, as we 
wished to investigate the agreement of neuron cluster hierarchies.

To quantify replicability, we used the same modified version of Meta-
Neighbor, the same datasets and the same variable genes as defined 
above (see ‘MetaNeighbor analysis’). We used the one-vs-best AUROC 
to obtain cluster similarity scores, then computed an average AUROC 
score per integrated cluster (averaged over every pair of datasets in 
which the cluster is present). For every method, we reported the median 
AUROC across integrated clusters as the final reproducibility score. To 
quantify the overall similarity of the clustering results, we computed 
the adjusted Rand index. When necessary, we restricted the adjusted 
Rand index computation to the intersection of labelled cells (the inter-
section being recomputed for every pair of methods).

Conos analysis. To evaluate the extent to which different cell sub-
populations were supported by different platforms, we assessed the 
difference in the ability to recover the corresponding cell with and 
without within-platform comparisons. The clustering of cells was per-
formed using Conos37 (Fig. 4g, h), using walktrap community detection 
to identify hierarchical cell populations. The stability of the hierarchical 
clusters was estimated as follows: 20 random cell subsampling rounds 
were performed, each sampling 95% of cells from each dataset, and 
repeating the walktrap hierarchical clustering procedure. For each 
node in the original walktrap tree, we evaluated stability as a minimum 
of specificity and sensitivity relative to the ensemble of subsampled 
trees by finding the best-matching subtree. To evaluate the ability to 
recover subpopulations based on cross-platform comparisons only, we 
removed within-platform edges (those connecting datasets generated 
by the same platform) in the joint graph (generated by Conos). In this 
way, the subpopulation was detected only based on mapping to the 
other platform. The modified approach facilitates grouping of cell 
populations that are common in the different platforms, as it removes 
the platform-specific information in the joint graph.

To assess the similarity of the expression profiles detected by differ-
ent platforms for a given cell type (Fig. 4h), we used Jensen–Shannon 
divergence to assess the overall similarity of gene expression patterns 
between the four RNA-seq platforms (scRNA 10x v3 A, snRNA 10x v3 
A, scRNA SMART and snRNA SMART). Specifically, 1,000 cells were 
sampled from each cell type for each platform. If the number of cells 
from a cell type was fewer than 1,000 cells, sampling with replace-
ment was performed. Cell types that accounted for less than 1% (fewer 
than 300 cells) in any specific platform were omitted. The molecules 
detected for each gene were then aggregated across all sampled cells 
for each cell type in each platform. The counts were normalized by the 
total number of molecules for each cell type or platform, and Jensen– 
Shannon divergence was calculated.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The BICCN MOp data (RRID: SCR_015820) can be accessed via the 
NeMO archive (RRID: SCR_016152) at: https://assets.nemoarchive.
org/dat-ch1nqb7. Visualization and analysis resources can be found 

https://assets.nemoarchive.org/dat-ch1nqb7
https://assets.nemoarchive.org/dat-ch1nqb7


at: NeMO analytics (https://nemoanalytics.org/), Genome browser 
(https://brainome.ucsd.edu/BICCN_MOp) and Epiviz browser (https://
epiviz.nemoanalytics.org/biccn_mop).

Code availability
The codes used for data analysis: scrattch.hicat (hierarchical, iterative 
clustering for analysis of transcriptomics) for RNA clustering (https://
github.com/AllenInstitute/scrattch.hicat); SnapTools for ATAC-seq 
analysis (https://github.com/r3fang/SnapTools); YAP (Yet Another 
Pipeline) and ALLCools for DNA methylation (snmC-seq2) mapping 
and cluster-level aggregation (https://github.com/lhqing/cemba_data; 
documentation: cemba-data.rtfd.io; https://lhqing.github.io/ALL-
Cools); MetaNeighbor for cluster reproducibility analysis (https://
github.com/gillislab/MetaNeighbor-BICCN); LIGER for multimodal 
integration, embedding and clustering (https://github.com/welch-lab/
liger); SingleCellFusion for multimodal integration, embedding and 
clustering (https://github.com/mukamel-lab/SingleCellFusion); Conos 
for cluster reproducibility analysis (https://github.com/kharchenkolab/
conos); STAR v2.5.3 for RNA-seq alignment49; and Bismark for DNA 
methylation (snmC-seq2) alignment55.
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Extended Data Fig. 1 | A multimodal molecular cell-type atlas of the MOp.  
a, Anatomical location of the mouse MOp in the Allen Mouse Brain Common 
Coordinate Framework (CCFv3) in 3D and in representative sagittal and coronal 
sections. b–d, Documentation of MOp samples collected at the Allen Institute 
(b), the Broad Institute (c) and the Salk Institute (d). Each panel shows a diagram 
of coronal brain slices and dissected regions for transcriptomic (scRNA-seq 
and snRNA-seq) and epigenomic (snATAC and snmC-seq2) data samples based 
on the Allen Mouse Brain Common Coordinate Framework (CCF). Nissl-stained 
images in d show the posterior face of tissue slices (600 μm thickness).  
e, Number of cells and median number of unique sequenced DNA or RNA 
fragments per cell in each of the nine single-cell transcriptomic and 
epigenomic datasets. The squares show the extrapolated total library size 
based on the sequence duplication rate. f, Number of cells in each of the major 
cell classes (glutamatergic excitatory, GABAergic inhibitory neurons and non-
neurons) of each dataset. Differences in cell-type sampling strategy, including 
the use of cell sorting to enrich neurons, affect the relative number of neurons 
and non-neuronal cells. Datasets include cells from the following numbers of 
mice (Supplementary Table 1): scRNA SMART: n = 28 male, 17 female; scRNA 10x 
v3 A: n = 3 male, 3 female; scRNA 10x v2 A: n = 3 male; snRNA SMART: n = 8 male, 2 
female; snRNA 10x v3 B: n = 5 male, 6 female; snRNA 10x v2: n = 2 male, 1 female; 
snRNA 10x v3 A: n = 1 female; snmC-seq2 and snATAC-seq: n = 2 replicates, each 
pooled from 6 to 30 male mice. g, NeMO Analytics (nemoanalytics.org) 
visualization and analysis environment for the BICCN mouse molecular  
mini-atlas. Screenshot of NeMO Analytics showing multi-omic results for 

glutamate decarboxylase 2 (Gad2), a marker gene in inhibitory neurons. The 
web portal has the following features: (1) search box for gene names; (2) 
indicator of the gene viewed; (3) expandable species-specific functional 
annotation; (4) link-outs to additional resources for the selected gene; (5–7) 
interactive visualizations of each BICCN dataset, displayed in a ‘standalone’ 
box showing gene expression and cell clustering on integrated UMAP 
coordinates. Additional data exploration options for each of the datasets are 
available via the drop-down menu at the upper right corner of the NeMO 
Analytics dataset titles. (8) An embedded Epiviz interactive workspace to 
visualize scATAC-seq and sncMethyl-seq datasets in a linear browser view (8a), 
here showing the average ATAC and % CG methylation at the Gad2 locus (8c, 8d) 
as well as in each major cluster of glutamatergic and GABAergic neurons (8b, 
8e, 8f). Epigenomic data are also available at http://epiviz.nemoanalytics.org/
biccn_mop, and instructions for setting up and extending the Epiviz 
workspaces are available at http://github.com/epiviz/miniatlas. h, Brainome 
epigenomics portal (https://brainome.ucsd.edu/BICCN_MOp). The portal 
shows single-base resolution epigenomic and transcriptomic data (snmC-seq2, 
snATAC-seq, scRNA-seq and snRNA-seq) using the AnnoJ browser. Drop-down 
menus allow the user to select groups of cells (for example, excitatory, 
inhibitory and MGE-derived, among others), modalities (mCG, mCA, ATAC, 
scRNA, snRNA and enhancers) and display options. A Cell Browser allows 
visualization of scatter plots and heat maps of groups of genes across data 
modalities.

http://epiviz.nemoanalytics.org/biccn_mop
http://epiviz.nemoanalytics.org/biccn_mop
http://github.com/epiviz/miniatlas
https://brainome.ucsd.edu/BICCN_MOp
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Cluster membership and gene expression 
consistency across scRNA-seq and snRNA-seq datasets. a, Pearson 
correlation of gene expression of 3,792 cell-type-specific marker genes across 
cell types between every pair of datasets. Each violin plot shows the 
distribution of correlation values for all genes between a pair of datasets. Most 
genes have highly conserved gene expression patterns at the cell-type level 
among all datasets (average correlation of 0.856 across all pairs of 
comparisons). The most consistent datasets are scRNA 10x v2 and v3 (average 
correlation of 0.95), while snRNA 10x v3 B is also highly similar to both scRNA 
10x v2 and v3 datasets. Overall, we found the differences between single-cell 
and single-nucleus datasets to be more significant than SMART-Seq versus 10x 
platform differences. b, Number of genes detected per cell or nucleus by each 
transcriptomic assay as a function of sequencing depth, as determined by 
downsampling analysis (n = 79 independent biological samples; see 
Supplementary Table 1). c, Gene detection frequency (sensitivity) at each gene 
expression range for each dataset (n = 79 independent biological samples; see 
Supplementary Table 1). Expression of all genes in each cell type was binned 
based on the average logCPM in scRNA 10x v2 and snRNA 10x v3 B datasets. 
Single-cell datasets overall have higher sensitivity for gene expression than 
single-nucleus datasets, with the exception of the snRNA 10x v3 B dataset, 
which was more sensitive than the scRNA 10x v2 A dataset. For weakly 
expressed genes, the gene detection frequency can vary dramatically between 
datasets. For these genes, scRNA SMART was the most sensitive, followed by 
10x v3 datasets, all of which showed very robust gene detection. Note that 
sequencing depth was not considered for this analysis. For b, c, box-and-
whisker plots show the median, the interquartile range (IQR) (25–75th 
percentile), and the whiskers show the smaller of the data range (minimum to 
maximum) or 1.5 times the IQR. d, Comparisons between clustering analysis of 
individual datasets with the consensus clusters derived from seven 
transcriptomic datasets. The size of the dot indicates the number of 

overlapping cells, and the colour of the dot indicates the Jaccard index (number 
of cells in intersection/number of cells in union) between the independent and 
joint clusters. e, Comparison of the relative gene expression of marker genes 
across all cell types between corresponding SMART-Seq and 10x v2 datasets. 
To compare gene expression directly between SMART-Seq and 10x datasets, 
which differ in experimental platforms, gene expression quantification 
software and gene annotation reference, for each gene, we normalized the 
average log2(CPM + 1) values at the cluster level in the range [0,1] by subtracting 
the minimum value and then dividing by the maximum value for that gene. The 
smooth scatter plot corresponds to the normalized gene expression for all 
marker genes across all types in two datasets, with their overall Pearson 
correlation (across all marker genes and cell types) highlighted. f, Differential 
enrichment of transcripts in single cells (x axis) versus single nuclei ( y axis) 
across four platforms. Non-coding RNAs such as Malat1 are enriched in nuclei. 
g, Distribution of the estimated nuclear localization fraction for all mRNAs 
based on comparison of the snRNA and scRNA 10x v2 datasets22. To calibrate 
the differences among cell types, we sampled the same number of cells in each 
cluster for both datasets, and aggregated all the cells for estimation. We plot 
the empirical cumulative density function for the marker genes and all other 
genes separately. The fraction of nuclear mRNAs for five selected genes are 
shown along the x axis. As expected, mitochondrial genes such as mt-Nd3 have 
almost no nuclear localization, whereas Vip is significantly enriched in the 
nucleus. A selected set of 3,792 cell-type-specific marker genes (see Methods 
section ‘Marker gene selection’) have a lower nuclear fraction relative to the 
other genes (median 16.6%, compared with 21.9% for non-marker genes).  
h, Cluster resolution analysis, showing the number of clusters identified in 
each transcriptomic dataset with a fixed cluster procedure and resolution 
(r = 6) as a function of the number of sequenced reads, and using the same 
number of cells for each of the 10x or SMART-Seq datasets. The shaded region 
shows the s.e.m. from cross-validation with n = 5 independent data partitions.
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Extended Data Fig. 3 | Correspondence between the MOp consensus 
RNA-seq cell-type taxonomy and previously published VISp/ALM cell-type 
taxonomy3. a, Cells from all scRNA and snRNA MOp datasets were mapped to 
the most correlated VISp/ALM cell types based on VISp/ALM cell-type markers. 
The size of the dots indicates the number of overlapping cells, and the colour 
indicates the Jaccard index (number of cells in intersection/number of cells in 
union). MOp L5 ET types are mapped predominantly to L5 pyramidal tract (PT) 
ALM types in the VISp/ALM study. Note that we have adopted the nomenclature 
‘extratelencephalically projecting (ET)’ for these neurons, instead of the 

previously used ‘pyramidal tract (PT)’, owing to the fact that not all of these 
neurons project to the pyramidal tract leading to the spinal cord. b, Three L5 PT 
ALM types can be divided into two groups with distinct projection patterns. 
Cells in the pink group project to the medulla and have been functionally 
associated with movement initiation, while the cells in the green group project 
to the thalamus, associated with movement planning. Adapted from Economo 
et al. (2018)18. c, Enlarged view of the correspondence between MOp L5 ET 
types and VISp/ALM L5 PT types. Two subsets of medulla-projecting (pink) and 
thalamus-projecting (green) L5 PT cells are highlighted.
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Extended Data Fig. 4 | Marker genes for L5 ET cell types. a, Heat map showing 
expression of a combination of marker genes of L5 PT ALM types in a previously 
published dataset3, and marker genes for MOp L5 ET types. The coloured bars 
on the top indicate the cell type and projection class. b, Heat map for MOp L5 ET 

types in multiple scRNA and snRNA datasets using the same marker genes in 
the same order as in a. Cell types are divided into pink and green groups based 
on correspondence in Extended Data Fig. 3c.
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Extended Data Fig. 5 | Marker genes for L4/5 IT and L5 IT cell types.  
a, Heat map of marker genes for MOp L4/5 IT and L5 IT types in multiple scRNA 
and snRNA datasets. b, In situ hybridization (ISH) showing validation of L4 

marker genes (Rspo1 and Rorb) and L5 (Fezf2) in the mouse MOp. Note that Rorb 
labels both L4 and a subset of L5 neurons.



0

60,000

C
el

ls

0

100%

Fr
ac

tio
n 

of
ce

lls

0

1000

O
ve

ra
ll

56 Cell types (ranked by abundance)
(SingleCellFusion)

h

SingleCellFusion

snATAC-seq
81,196 cells

Astro

CGE
Endo

L2/3 IT

L4/5 IT

L5 PT

L6 CTL6 IT

Micro

NP
Oligo

OPC Pvalb

SMC

Sst

TSNE 1

TS
N

E 
 2

snmC-seq
9,876 cells

CGE

L2/3 IT

L4/5 IT

L5 PT

L6 CT

L6 IT

NP

L6bPvalb

Sst

NonNeuronal
TSNE 1

TS
N

E 
2

Cux2

Rorb

Sulf1

Tle4

Tshz2

Adarb2

Lhx6

Pvalb

Grin3a

Gfap

Mog

Pdgfra

Csf1r

Slc6a13

L2/3 IT L4/5 IT L6
 IT

L5
 PT

L6
 C

T
L6

 N
P

MGE CGE
Astro Oligo OPC

Micr
o

SMC

Cux2

Rorb

Deptor

Grik3

Sulf1

Foxp2

Tshz2

Galnt10

Adarb2

Lhx6

Pvalb

Grin3a

Vip

Ndnf

Lamp5

L2/3 IT L4/5 IT

Cells

DNA methylation in gene bodies (normalized mCH rate)

Chromatin accessibility in gene bodies (snATAC-Seq, log10(CPM + 1))

L6 IT L5
 PT

L6 CT
L6

 N
P
L6

b

Pv Sst
Vip La

mp5

Non
Na b

c d

1
5

1
5

1
5

1
4

1
6

2
6

1
3

1
2

1
5

0
1

1
2

0
5

1
4

1
5

0.3
1.3

0.3
1.3

0.3
1.3

0.3
1.3

0.5
1.3

0.3
1.3

0.3
1.3

0.5
1.3

0.3
1

0.5
1

0.3
1

0.5
1

0.5
1.3

0.5
1

0.6
1.3

i j

f

1 2 3

4 5 6

7 8

Colored by single-dataset clusterings
(LIGER)

e

1 2 3

4 5 6

7 8

Colored by single-dataset clusterings
(SingleCellFusion)

g

IT non-IT MGE-derived CGE-derived

Colored by
modality

Colored by
cell type

Sub-population integrations (LIGER)
Excitatory Inhibitory Non-neuronal

Integrated multimodal clusters
(SingleCellFusion; same order of appearance as Fig. 2f)

Integrated multimodal clusters
(LIGER)

DNA methylation (snmC-seq)

snRNA SMART

scRNA SMART

Open chromatin (snATAC-seq)

scRNA 10X v3 A

snRNA 10X v3 A
snRNA 10X v3 B

scRNA 10X v2 A

Tr
an

sc
rip

to
m

e
(R

N
A-

se
q)

C
el

ls
N

uc
le

i

Ep
ig

en
om

e

1
2
3
4
5
6
7
8

10
1,000

100,000

10
1,000

100,000

L0

L1

L2

L2/3 IT

L2
/3

 IT
 (1

-2
)

L2
/3

 IT
 (1

)
L2

/3
 IT

 (2
)

L2
/3

 IT
 (3

-5
)

L2
/3

 IT
 (3

)
L2

/3
 IT

 (4
)

L2
/3

 IT
 (5

)

L4/5 
IT

L4
/5

 IT
 (1

)
L4

/5
 IT

 (1
)

L4
/5

 IT
 (2

-3
)

L4
/5

 IT
 (2

)
L4

/5
 IT

 (3
)

L5/6 
IT

L5
 IT

L5
 IT

 (2
)

L5
 IT

 (3
)

L6
(5

) I
T

L5
 IT

 (1
)

L6
 IT

L6
 IT

 C
ar

3
L6

 IT
 C

ar
3

L5 
ET

L5
 E

T 
(1

)
L5

 E
T 

(1
)

L5
 E

T 
(2

-3
)

L5
 E

T 
(2

)
L5

 E
T 

(3
)

L6 CT

L6
 C

T 
C

pa
6

L6
 C

T 
C

pa
6 

(1
)

L6
 C

T 
C

pa
6 

(2
)

L6
 C

T 
C

pa
6_

G
pr

13
9

L6
 C

T 
C

pa
6 

(3
)

L6
 C

T 
C

pa
6 

(4
)

L6
 C

T 
G

pr
13

9
L6

 C
T 

C
pa

6 
(5

)

L6
 C

T 
N

xp
h2

L6
 C

T 
N

xp
h2

 P
ou

3f
2 

(1
)

L6
 C

T 
N

xp
h2

 P
ou

3f
2 

(2
)

L6
 C

T 
N

xp
h2

 K
it

L6b

L6
b 

Sh
is

a6
L6

b 
Sh

is
a6

 (1
)

L6
b 

Sh
is

a6
 (2

)
L6

b 
R

or
1

L6
b 

R
or

1

L6
b 

Kc
ni

p1
L6

b 
Kc

ni
p1

 (2
)

L6
b 

Kc
ni

p1
 (1

)

NP

L5
/6

 N
P

L6
 N

P 
Tr

h
L5

 N
P 

Tr
h

L5
 N

P 
Sl

c1
7a

8
L5

 N
P 

Sl
c1

7a
8 

(2
)

L5
 N

P 
Sl

c1
7a

8 
(1

)

MGE

Pv
al

b 
G

ab
rg

1
Pv

al
b 

G
ab

rg
1

Pv
al

b 
R

el
n_

C
al

b1
Pv

al
b 

R
el

n
Pv

al
b 

C
al

b1
Pv

al
b 

Vi
pr

2
Pv

al
b 

Vi
pr

2

Ss
t M

yh
8_

C
rh

r2
Ss

t M
yh

8
Ss

t C
rh

r2
 (1

)
Ss

t C
rh

r2
 (2

)

Ss
t C

al
b2

_H
sp

e
Ss

t C
al

b2
Ss

t H
sp

e
Ss

t C
ho

dl
Ss

t C
ho

dl
Ss

t C
ho

dl

CGE

Vi
p 

C
ha

t_
C

ris
pl

d2
Vi

p 
C

ha
t

Vi
p 

C
ris

pl
d2

Vi
p 

G
pc

3_
H

tr1
f_

lg
fb

p6
Vi

p 
G

pc
3

Vi
p 

H
tr1

f
Vi

p 
Ig

fb
p6

Sn
cg

 
Sn

cg
 N

py
2r

Vi
p 

Se
rp

in
f1

Sn
cg

 C
ol

14
a1

La
m

p5
 L

hx
6

La
m

p5
 L

hx
6

La
m

p5
 S

lc
35

d3
La

m
p5

 S
lc

35
d3

La
m

p5
 P

dl
im

5_
Pa

x6
La

m
p5

 P
dl

im
5

La
m

p5
 P

ax
6

N
um

be
r o

f
ce

lls
C

lu
st

er
 le

ve
l

L0

L2

IT

L2
/3

 IT
L2

/3
 IT

L2
/3

 IT
L2

/3
 IT

L2
/3

 IT
L4

/5
 IT

L4
/5

 IT
L4

/5
 IT

L5
 IT

L5
 IT

L6
 IT

non-IT

L5
 E

T
L5

 E
T

L5
 E

T
L5

 E
T

L6
 C

T 
C

pa
6

L6
 C

T 
C

pa
6

L6
 C

T 
C

pa
6

L6
 C

T 
C

pa
6

L6
 C

T 
C

pa
6

L6
 C

T 
Po

u3
f2

L6
b 

R
or

1
L5

/6
 N

P
L5

/6
 N

P

MGE

Pv
al

b 
R

el
n

Pv
al

b 
C

al
b1

Pv
al

b 
G

ab
rg

1
Pv

al
b 

Il1
ra

pl
2

Pv
al

b 
G

pr
14

9
Pv

al
b 

Vi
pr

2
Ss

t P
va

lb
 C

al
b2

Ss
t C

1q
l3

Ss
t C

al
b2

Ss
t H

ps
e

Ss
t M

yh
8

Ss
t C

1q
l3

Ss
t C

rh
r2

Ss
t M

yh
8

Ss
t C

ho
dl

CGE

Vi
p 

C
ha

t
Vi

p 
C

ha
t

Vi
p 

C
ha

t
Vi

p 
C

ha
t

Vi
p 

Se
rp

in
f1

Vi
p 

G
pc

3
Vi

p 
Ig

fb
p6

Vi
p 

H
tr1

f
Vi

p 
M

yb
pc

1
Sn

cg
 N

py
2r

Sn
cg

 S
lc

17
a8

La
m

p5
 L

hx
6

La
m

p5
 S

lc
35

d3
La

m
p5

 S
lc

35
d3

La
m

p5
 E

gl
n3

_3
La

m
p5

 P
dl

im
5_

2
La

m
p5

 P
ax

6

Non-neuron

As
tro

_T
op

2a
As

tro
 A

qp
4_

G
fa

p
As

tro
 A

qp
4_

Sl
c7

a1
0

O
PC

 P
dg

fra
O

lig
o 

En
pp

6_
2

O
lig

o 
O

pa
lin

_1
O

lig
o 

O
pa

lin
_2

O
lig

o 
O

pa
lin

_2
En

do
VL

M
C

_2
VL

M
C

_3
VL

M
C

_5
SM

C
M

ic
ro

PV
M

_1

N
um

be
r o

f
ce

lls

Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Epigenomic cell types and multimodal integration. 
a, Cell-type clusters from single-nucleus methyl-C-Seq (snmC-seq2 (refs. 9,14)) 
for 9,876 MOp nuclei are represented in a two-dimensional projection. Labels 
indicate broad cell types; the colours show finest cluster resolution. b, Non-CG 
DNA methylation level (normalized mCH) for each cell at gene bodies of 
markers of major cell types. Actively expressed genes have low mCH, indicated 
by the coloured bars extending downward. Highly methylated (repressed) 
genes appear white in this plot. c, Two-dimensional projection of cell-type 
clusters from snATAC-seq11 profiles for 81,196 cells. d, Gene body chromatin 
accessibility (total snATAC-seq read density, log(CPM + 1)) for marker genes. 
For b and d, each bar represents one cell. The abbreviations of cell type are as in 

Fig. 2. CGE/MGE, caudal/medial ganglionic eminence-derived inhibitory cells. 
e, f, Integrated, multimodal UMAP embeddings (SingleCellFusion (e); LIGER 
(f)) coloured by the clusters assigned in separate analysis of each dataset. Each 
panel shows the cells from a single dataset. g, Integrated analysis of major cell 
classes by LIGER. Cells in each of the five cell classes are separately integrated, 
illustrating fine-grained resolution of integrated data. h, Number of cells in 
each of 56 multimodality cell types (SingleCellFusion; L2), ranked by cluster 
size. i, j, Number of cells for 56 integrated clusters (SingleCellFusion L2 (i); 
LIGER L2 ( j)), as well as the corresponding coarser clusters (L1, L0). Cluster 
order and colour scheme are as shown in Fig. 2.
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Extended Data Fig. 7 | Validation of multimodal integration of 
transcriptomic and epigenomic data. a, Confusion matrices comparing 
integrated clusters generated by SingleCellFusion versus clusters generated by 
LIGER (left), and comparing SingleCellFusion versus consensus transcriptomic 
taxonomy (right). b, Confusion matrix comparing integrated clusters 
(SingleCellFusion L2) with single-modality clustering for every dataset.  
c, d, Agreement and alignment metrics29 characterize the fidelity of the joint 
low-dimensional embedding for LIGER and SingleCellFusion. Agreement 
measures the fraction of KNNs for each dataset that are still nearest neighbours 
in the low-dimensional embedding. A high value of the agreement metric thus 
indicates preservation of each dataset’s internal structure in the joint 
embedding. Alignment measures the mixing of datasets in the joint 

low-dimensional space, and is a normalized measure of the mean number of 
KNNs that come from each of the datasets. e, Embedding of multimodality 
cluster centroids. The black dots are cluster centroids of integrated clusters 
(SingleCellFusion); coloured dots are cluster centroids of individual datasets.  
f, Molecular signatures at the gene body of Lhx9, a developmentally expressed 
transcription factor, across cell types (n = 29; SingleCellFusion L1). We found 
enrichment of mCG and mCH in L6b neurons with no corresponding RNA or 
ATAC-seq signal. g, Spearman correlation matrix for cluster centroid gene 
expression (measured or imputed) across major cell subclasses for each 
dataset (SingleCellFusion L0). h, Correlation for subsets of inhibitory (CGE and 
MGE) and excitatory (L4/5 IT and L2/3 IT) neuron types using fine-grained 
integrated clusters (SingleCellFusion L2).
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Extended Data Fig. 8 | MetaNeighbor and cross-validation analysis  
of cluster reproducibility. a, Heat map showing replicability scores 
(MetaNeighbor AUROC) at the subclass level of the independent clusterings of 
seven RNA-seq datasets. High AUROC indicates that the cell-type labels in one 
dataset can be reliably predicted based on the nearest neighbours of those 
cells in another dataset, together with the independent cluster analysis of that 
dataset. b, Scheme for within-dataset and across-dataset cross-validation.  

c, d Within-dataset cross-validation analysis for each dataset, either using the 
full set of cells (c) or using a random sample of 5,000 cells (d). In each plot, the 
black curve shows training error, while the coloured U-shaped curve shows the 
test set error, with a minimum at the cluster resolution that balances 
over-fitting and under-fitting. The shaded region shows the s.e.m. based on 
cross-validation with n = 5 data partitions. e, Transcriptomic platform 
consistency is assessed by cross-dataset cluster stability analysis (Conos37).
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