39 research outputs found

    Prezygotic Barriers to Hybridization in Marine Broadcast Spawners: Reproductive Timing and Mating System Variation

    Get PDF
    Sympatric assemblages of congeners with incomplete reproductive barriers offer the opportunity to study the roles that ecological and non-ecological factors play in reproductive isolation. While interspecific asynchrony in gamete release and gametic incompatibility are known prezygotic barriers to hybridization, the role of mating system variation has been emphasized in plants. Reproductive isolation between the sibling brown algal species Fucus spiralis, Fucus guiryi (selfing hermaphrodite) and Fucus vesiculosus (dioecious) was studied because they form hybrids in parapatry in the rocky intertidal zone, maintain species integrity over a broad geographic range, and have contrasting mating systems. We compared reproductive synchrony (spawning overlap) between the three species at several temporal scales (yearly/seasonal, semilunar/tidal, and hourly during single tides). Interspecific patterns of egg release were coincident at seasonal (single peak in spring to early summer) to semilunar timescales. Synthesis of available data indicated that spawning is controlled by semidiurnal tidal and daily light-dark cues, and not directly by semilunar cycles. Importantly, interspecific shifts in timing detected at the hourly scale during single tides were consistent with a partial ecological prezygotic hybridization barrier. The species displayed patterns of gamete release consistent with a power law distribution, indicating a high degree of reproductive synchrony, while the hypothesis of weaker selective constraints for synchrony in selfing versus outcrossing species was supported by observed spawning in hermaphrodites over a broader range of tidal phase than in outcrossers. Synchronous gamete release is critical to the success of external fertilization, while high-energy intertidal environments may offer only limited windows of reproductive opportunity. Within these windows, however, subtle variations in reproductive timing have evolved with the potential to form ecological barriers to hybridization

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Are food-deceptive orchid species really functionally specialized for pollinators?

    Get PDF
    Food-deceptive orchid species have traditionally been considered pollination specialized to bees or butterflies. However, it is unclear to which concept of specialization this assumption is related; if to that of phenotypic specialization or of functional specialization. The main aim of this work was to verify if pollinators of five widespread food-deceptive orchid species (Anacamptis morio (L.) R.M. Bateman, Pridgeon & M.W. Chase, Anacamptis pyramidalis (L.) Rich., Himantoglossum adriaticum H. Baumann, Orchis purpurea Huds. and Orchis simia Lam.) predicted from the phenotypic point of view matched with the observed ones. We addressed the question by defining target orchids phenotypic specialization on the basis of their floral traits, and we compared the expected guilds of pollinators with the observed ones. Target orchid pollinators were collected by conducting a meta-analysis of the available literature and adding unpublished field observations, carried out in temperate dry grasslands in NE Italy. Pollinator species were subsequently grouped into guilds and differences in the guild spectra among orchid species grouped according to their phenotype were tested. In contradiction to expectations derived from the phenotypic point of view, food-deceptive orchid species were found to be highly functionally generalized for pollinators, and no differences in the pollinator guild spectra could be revealed among orchid groups. Our results may lead to reconsider food-deceptive orchid pollination ecology by revaluating the traditional equation orchid-pollination specialization

    Evolution of plant genome architecture

    Get PDF

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams

    Polyactives: controlled and sustained bioactive release via hydrolytic degradation

    No full text
    Significant and promising advances have been made in the polymer field for controlled and sustained bioactive delivery. Traditionally, small molecule bioactives have been physically incorporated into biodegradable polymers; however, chemical incorporation allows for higher drug loading, more controlled release, and enhanced processability. Moreover, the advent of bioactive-containing monomer polymerization and hydrolytic biodegradability allows for tunable bioactive loading without yielding a polymer residue. In this review, we highlight the chemical incorporation of different bioactive classes into novel biodegradable and biocompatible polymers. The polymer design, synthesis, and formulation are summarized in addition to the evaluation of bioactivity retention upon release via in vitro and in vivo studies
    corecore