10 research outputs found

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    Impact of the inundation occurrence on the deep convection at continental scale from satellite observations and modeling experiments

    No full text
    This study is an attempt to evidence the impact of the inundation occurrence on the deep convection at continental scale. Three sources of satellite observations are carefully analyzed over the tropics for 3 years: A multisatellite wetland extent and dynamics data set, a deep convective activity index derived from passive microwave satellite measurements at 85 GHz, and precipitation estimates. Although many other effects contribute to the variability in the convection (e. g., large-scale circulation and weather regimes), careful examination of the seasonal and diurnal variations of the satellite-derived information makes it possible to observe two distinct regimes. The first regime corresponds to regions where the inundation is not generated by local precipitation. There it is shown that stronger convection happens during the minimum of the inundation, with a marked diurnal cycle of the deep convective activity. Simulations with a single-column model are in good agreement with these satellite observations. First, calculations show that during the season of minimum inundation, hydrometeors are present higher in altitude, increasing the likelihood of larger ice quantities aloft. Second, the diurnal cycle of the convective activity related to the presence of large ice quantities has a larger amplitude. The second regime corresponds to regions where the inundation is directly generated by local precipitation. There our observational analysis could not isolate any effect of the inundation on the convection

    Improved Representation of Clouds in the Atmospheric Component LMDZ6A of the IPSL-CM6A Earth System Model

    No full text
    The cloud parameterizations of the LMDZ6A climate model (the atmospheric component of the IPSL-CM6 Earth system model) are entirely described, and the global cloud distribution and cloud radiative effects are evaluated against the CALIPSO-CloudSat and CERES observations. The cloud parameterizations in recent versions of LMDZ favor an object-oriented approach for convection, with two distinct parameterizations for shallow and deep convection and a coupling between convection and cloud description through the specification of the subgrid-scale distribution of water. Compared to the previous version of the model (LMDZ5A), LMDZ6A better represents the low-level cloud distribution in the tropical belt, and low-level cloud reflectance and cover are closer to the PARASOL and CALIPSO-GOCCP observations. Mid-level clouds, which were mostly missing in LMDZ5A, are now better represented globally. The distribution of cloud liquid and ice in mixed-phase clouds is also in better agreement with the observations. Among identified deficiencies, low-level cloud covers are too high in mid-latitude to high-latitude regions, and high-level cloud covers are biased low globally. However, the cloud global distribution is significantly improved, and progress has been made in the tuning of the model, resulting in a radiative balance in close agreement with the CERES observations. Improved tuning also revealed structural biases in LMDZ6A, which are currently being addressed through a series of new physical and radiative parameterizations for the next version of LMDZ. ©2020. The Authors

    The added value of large-eddy and storm-resolving models for simulating clouds and precipitation

    No full text
    This study investigates, if atmospheric models with horizontal resolutions of 100 m to 2 km are able to better simulate key features, like clouds and precipitation, of the climate system than currently used models employing much coarser resolution and parameterized convection. Precipitation characteristics are much more realistic in the simulations with explicitly convection, already at kilometer resolutions. Increasing resolution to hectometer scales improves the simulation of precipitation only modestly, but substantially improves the simulation of clouds. The results suggest that new climate models, which explicitly resolve convection and the interaction with its environment, offer exciting opportunities to learn about the climate system

    Presentation and evaluation of the IPSL-CM6A-LR climate model

    No full text
    This study presents the global climate model IPSL-CM6A-LR developed at Institut Pierre-Simon Laplace (IPSL) to study natural climate variability and climate response to natural and anthropogenic forcings as part of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). This article describes the different model components, their coupling, and the simulated climate in comparison to previous model versions. We focus here on the representation of the physical climate along with the main characteristics of the global carbon cycle. The model's climatology, as assessed from a range of metrics (related in particular to radiation, temperature, precipitation, and wind), is strongly improved in comparison to previous model versions. Although they are reduced, a number of known biases and shortcomings (e.g., double Intertropical Convergence Zone [ITCZ], frequency of midlatitude wintertime blockings, and El Nino-Southern Oscillation [ENSO] dynamics) persist. The equilibrium climate sensitivity and transient climate response have both increased from the previous climate model IPSL-CM5A-LR used in CMIP5. A large ensemble of more than 30 members for the historical period (1850-2018) and a smaller ensemble for a range of emissions scenarios (until 2100 and 2300) are also presented and discussed

    EUREC4A

    Get PDF
    Abstract. The science guiding the EUREC4A campaign and its measurements are presented. EUREC4A comprised roughly five weeks of measurements in the downstream winter trades of the North Atlantic – eastward and south-eastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or, or the life-cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso (200 km) and larger (500 km) scales, roughly four hundred hours of flight time by four heavily instrumented research aircraft, four global-ocean class research vessels, an advanced ground-based cloud observatory, a flotilla of autonomous or tethered measurement devices operating in the upper ocean (nearly 10000 profiles), lower atmosphere (continuous profiling), and along the air-sea interface, a network of water stable isotopologue measurements, complemented by special programmes of satellite remote sensing and modeling with a new generation of weather/climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from Brazil Ring Current Eddies to turbulence induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. </jats:p
    corecore