88 research outputs found
LRP-1-mediated intracellular antibody delivery to the Central Nervous System
The blood-brain barrier (BBB) is by far the most important target in developing new approaches to improve delivery of drugs and diagnostic tools into the Central Nervous System (CNS). Here we report the engineering of pH-sensitive polymersomes (synthetic vesicles formed by amphiphilic copolymers) that exploit endogenous transport mechanisms to traverse the BBB, enabling delivery of large macromolecules into both the CNS parenchyma and CNS cells. We achieve this by targeting the Low Density Lipoprotein Receptor-Related Protein 1 (LRP-1) receptor. We show that LRP-1 is associated with endothelial transcytosis that does not involve acidification of cargo in membrane-trafficking organelles. By contrast, this receptor is also associated with traditional endocytosis in CNS cells, thus aiding the delivery of relevant cargo within their cytosol. We prove this using IgG as a model cargo, thus demonstrating that the combination of appropriate targeting combined with pH-sensitive polymersomes enables the efficient delivery of macromolecules into CNS cells.</p
Attributing scientific and technical progress: the case of holography
Holography, the three-dimensional imaging technology, was portrayed widely as a paradigm
of progress during its decade of explosive expansion 1964–73, and during its subsequent
consolidation for commercial and artistic uses up to the mid 1980s. An unusually
seductive and prolific subject, holography successively spawned scientific insights, putative
applications and new constituencies of practitioners and consumers. Waves of forecasts,
associated with different sponsors and user communities, cast holography as a field on the
verge of success—but with the dimensions of success repeatedly refashioned. This retargeting
of the subject represented a degree of cynical marketeering, but was underpinned by
implicit confidence in philosophical positivism and faith in technological progressivism.
Each of its communities defined success in terms of expansion, and anticipated continual
progressive increase. This paper discusses the contrasting definitions of progress in holography,
and how they were fashioned in changing contexts. Focusing equally on reputed ‘failures’ of some aspects of the subject, it explores the varied attributes by which success and failure were linked with progress by different technical communities. This important case illuminates the peculiar post-World War II environment that melded the military, commercial and popular engagement with scientific and technological subjects, and the
competing criteria by which they assessed the products of science
Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project
The Numerical INJection Analysis (NINJA) project is a collaborative effort
between members of the numerical relativity and gravitational-wave data
analysis communities. The purpose of NINJA is to study the sensitivity of
existing gravitational-wave search algorithms using numerically generated
waveforms and to foster closer collaboration between the numerical relativity
and data analysis communities. We describe the results of the first NINJA
analysis which focused on gravitational waveforms from binary black hole
coalescence. Ten numerical relativity groups contributed numerical data which
were used to generate a set of gravitational-wave signals. These signals were
injected into a simulated data set, designed to mimic the response of the
Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this
data using search and parameter-estimation pipelines. Matched filter
algorithms, un-modelled-burst searches and Bayesian parameter-estimation and
model-selection algorithms were applied to the data. We report the efficiency
of these search methods in detecting the numerical waveforms and measuring
their parameters. We describe preliminary comparisons between the different
search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ
Longitudinal serum S100β and brain ageing in the Lothian Birth Cohort 1936
Elevated serum and cerebrospinal fluid concentrations of S100β, a protein predominantly found in glia, are associated with intracranial injury and neurodegeneration, although concentrations are also influenced by several other factors. The longitudinal association between serum S100β concentrations and brain health in nonpathological aging is unknown. In a large group (baseline N = 593; longitudinal N = 414) of community-dwelling older adults at ages 73 and 76 years, we examined cross-sectional and parallel longitudinal changes between serum S100β and brain MRI parameters: white matter hyperintensities, perivascular space visibility, white matter fractional anisotropy and mean diffusivity (MD), global atrophy, and gray matter volume. Using bivariate change score structural equation models, correcting for age, sex, diabetes, and hypertension, higher S100β was cross-sectionally associated with poorer general fractional anisotropy (r = -0.150, p = 0.001), which was strongest in the anterior thalamic (r = -0.155, p < 0.001) and cingulum bundles (r = -0.111, p = 0.005), and survived false discovery rate correction. Longitudinally, there were no significant associations between changes in brain imaging parameters and S100β after false discovery rate correction. These data provide some weak evidence that S100β may be an informative biomarker of brain white matter aging
Intergenerational educational mobility is associated with cardiovascular disease risk behaviours in a cohort of young Australian adults: The Childhood Determinants of Adult Health (CDAH) Study
<p>Abstract</p> <p>Background</p> <p>Although educational disparity has been linked to single risk behaviours, it has not previously been studied as a predictor of overall lifestyle. We examined if current education, parental education or educational mobility between generations was associated with healthy lifestyles in young Australian adults.</p> <p>Methods</p> <p>In 2004-06, participant and parental education (high [bachelor degree or higher], intermediate [vocational training], low [secondary school only]) were assessed. Educational mobility was defined as: stable high (participant and parent in high group), stable intermediate (participant and parent in intermediate group), stable low (participant and parent in low group), downwardly (lower group than parent) and upwardly (higher group than parent) mobile. We derived a lifestyle score from 10 healthy behaviours (BMI, non-smoking, alcohol consumption, leisure time physical activity and six components of diet). Scores >4 indicated a high healthy lifestyle score. We estimated the likelihood of having a high healthy lifestyle score by education (participant and parent) and educational mobility.</p> <p>Results</p> <p>Complete data were available for 1973 participants (53% female, age range 26 to 36 years). Those with lower education were less likely to have healthy lifestyles. Parental education was not associated with having a high healthy lifestyle score after adjustment for participant's education. Those who moved upward or downward were as likely to have a high healthy lifestyle score as those in the group they attained.</p> <p>Conclusions</p> <p>We found clear disparities in health behaviour by participant education and intergenerational educational mobility. People attaining a higher level of education than their parents appeared protected from developing an unhealthy lifestyle suggesting that population-wide improvements in education may be important for health.</p
Assessing changes in global fire regimes
PAGES, Past Global Changes, is funded by the Swiss Academy of Sciences and the Chinese Academy of Sciences and supported in kind by the University of Bern, Switzerland. Financial support was provided by the U.S. National Science Foundation award numbers 1916565, EAR-2011439, and EAR-2012123. Additional support was provided by the Utah Department of Natural Resources Watershed Restoration Initiative. SSS was supported by Brigham Young University Graduate Studies. MS was supported by National Science Centre, Poland (grant no. 2018/31/B/ST10/02498 and 2021/41/B/ST10/00060). JCA was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 101026211. PF contributed within the framework of the FCT-funded project no. UIDB/04033/2020. SGAF acknowledges support from Trond Mohn Stiftelse (TMS) and University of Bergen for the startup grant ‘TMS2022STG03’. JMP participation in this research was supported by the Forest Research Centre, a research unit funded by Fundação para a Ciência e a Tecnologia I.P. (FCT), Portugal (UIDB/00239/2020). A.-LD acknowledge PAGES, PICS CNRS 06484 project, CNRS-INSU, Région Nouvelle-Aquitaine, University of Bordeaux DRI and INQUA for workshop support.Background The global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300. Results Respondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios. Conclusion The influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities.Peer reviewe
Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic
This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies
Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
- …