24 research outputs found
Fine-Pruning: Joint Fine-Tuning and Compression of a Convolutional Network with Bayesian Optimization
When approaching a novel visual recognition problem in a specialized image
domain, a common strategy is to start with a pre-trained deep neural network
and fine-tune it to the specialized domain. If the target domain covers a
smaller visual space than the source domain used for pre-training (e.g.
ImageNet), the fine-tuned network is likely to be over-parameterized. However,
applying network pruning as a post-processing step to reduce the memory
requirements has drawbacks: fine-tuning and pruning are performed
independently; pruning parameters are set once and cannot adapt over time; and
the highly parameterized nature of state-of-the-art pruning methods make it
prohibitive to manually search the pruning parameter space for deep networks,
leading to coarse approximations. We propose a principled method for jointly
fine-tuning and compressing a pre-trained convolutional network that overcomes
these limitations. Experiments on two specialized image domains (remote sensing
images and describable textures) demonstrate the validity of the proposed
approach.Comment: BMVC 2017 ora
qubit "mirror states" for optimal quantum communication
We introduce a new genuinely 2N qubit state, known as the "mirror state" with
interesting entanglement properties. The well known Bell and the cluster states
form a special case of these "mirror states", for N=1 and N=2 respectively. It
can be experimentally realized using and multiply controlled phase shift
operations. After establishing the general conditions for a state to be useful
for various communicational protocols involving quantum and classical
information, it is shown that the present state can optimally implement
algorithms for the quantum teleportation of an arbitrary N qubit state and
achieve quantum information splitting in all possible ways. With regard to
superdense coding, one can send 2N classical bits by sending only N qubits and
consuming N ebits of entanglement. Explicit comparison of the mirror state with
the rearranged N Bell pairs and the linear cluster states is considered for
these quantum protocols. We also show that mirror states are more robust than
the rearranged Bell pairs with respect to a certain class of collisional
decoherence.Comment: To be published in EPJ
Cerebral small vessel disease genomics and its implications across the lifespan
White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (pâ=â2.5Ă10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.Peer reviewe
Cerebral small vessel disease genomics and its implications across the lifespan
White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5Ă10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.</p
Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting.
OBJECTIVE: To explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts. METHODS: We performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n = 20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI. RESULTS: The mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 à 10-8; and LINC00539/ZDHHC20, p = 5.82 à 10-9. Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p [BI] = 9.38 à 10-25; p [SSBI] = 5.23 à 10-14 for hypertension), smoking (p [BI] = 4.4 à 10-10; p [SSBI] = 1.2 à 10-4), diabetes (p [BI] = 1.7 à 10-8; p [SSBI] = 2.8 à 10-3), previous cardiovascular disease (p [BI] = 1.0 à 10-18; p [SSBI] = 2.3 à 10-7), stroke (p [BI] = 3.9 à 10-69; p [SSBI] = 3.2 à 10-24), and MRI-defined white matter hyperintensity burden (p [BI] = 1.43 à 10-157; p [SSBI] = 3.16 à 10-106), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p †0.0022), without indication of directional pleiotropy. CONCLUSION: In this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI
Multi-person video understanding with deep neural networks
In this thesis, we present new methods to address multi-person scene understanding. Specifically, we focus on a multi-person task known as group activity recognition. We analyze multi-person scene understanding from the perspective of group activity recognition. We identify key challenges in group activity recognition, and present deep neural networks based approaches to handle these challenges. We show that our proposed approaches achieve competitive performance for group activity recognition. We also study one of the key components of group activity recognition in more detail, that is the problem of sequence modeling, where we apply new sequence modeling methods to the task of dense video captioning. In the end, we also investigate how to compress these large deep neural networks for efficient recognition on specialized domain tasks
A Hierarchical Deep Temporal Model for Group Activity Recognition
In group activity recognition, the temporal dynamics of the whole activity can be inferredbased on the dynamics of the individual people representing the activity. We build a deepmodel to capture these dynamics based on LSTM (long-short term memory) models. Tomake use of these observations, we present a 2-stage deep temporal model for the groupactivity recognition problem. In our model, a LSTM model is designed to represent actiondynamics of individual people in a sequence and another LSTM model is designed to aggregatehuman-level information for whole activity understanding. We evaluate our modelover two datasets: the collective activity dataset and a new volleyball dataset. Experimentalresults demonstrate that our proposed model improves group activity recognitionperformance as compared to baseline methods