31 research outputs found

    Universal Murray's law for optimised fluid transport in synthetic structures

    Full text link
    Materials following Murray's law are of significant interest due to their unique porous structure and optimal mass transfer ability. However, it is challenging to construct such biomimetic hierarchical channels with perfectly cylindrical pores in synthetic systems following the existing theory. Achieving superior mass transport capacity revealed by Murray's law in nanostructured materials has thus far remained out of reach. We propose a Universal Murray's law applicable to a wide range of hierarchical structures, shapes and generalised transfer processes. We experimentally demonstrate optimal flow of various fluids in hierarchically planar and tubular graphene aerogel structures to validate the proposed law. By adjusting the macroscopic pores in such aerogel-based gas sensors, we also show a significantly improved sensor response dynamic. Our work provides a solid framework for designing synthetic Murray materials with arbitrarily shaped channels for superior mass transfer capabilities, with future implications in catalysis, sensing and energy applications.Comment: 19 pages, 4 figure

    Metasurface spectrometers beyond resolution-sensitivity constraints

    Full text link
    Optical spectroscopy plays an essential role across scientific research and industry for non-contact materials analysis1-3, increasingly through in-situ or portable platforms4-6. However, when considering low-light-level applications, conventional spectrometer designs necessitate a compromise between their resolution and sensitivity7,8, especially as device and detector dimensions are scaled down. Here, we report on a miniaturizable spectrometer platform where light throughput onto the detector is instead enhanced as the resolution is increased. This planar, CMOS-compatible platform is based around metasurface encoders designed to exhibit photonic bound states in the continuum9, where operational range can be altered or extended simply through adjusting geometric parameters. This system can enhance photon collection efficiency by up to two orders of magnitude versus conventional designs; we demonstrate this sensitivity advantage through ultra-low-intensity fluorescent and astrophotonic spectroscopy. This work represents a step forward for the practical utility of spectrometers, affording a route to integrated, chip-based devices that maintain high resolution and SNR without requiring prohibitively long integration times

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Polygenic Risk Modelling for Prediction of Epithelial Ovarian Cancer Risk

    Get PDF
    Funder: Funding details are provided in the Supplementary MaterialAbstractPolygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally-efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, “select and shrink for summary statistics” (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestry; 7,669 women of East Asian ancestry; 1,072 women of African ancestry, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestry. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38(95%CI:1.28–1.48,AUC:0.588) per unit standard deviation, in women of European ancestry; 1.14(95%CI:1.08–1.19,AUC:0.538) in women of East Asian ancestry; 1.38(95%CI:1.21-1.58,AUC:0.593) in women of African ancestry; hazard ratios of 1.37(95%CI:1.30–1.44,AUC:0.592) in BRCA1 pathogenic variant carriers and 1.51(95%CI:1.36-1.67,AUC:0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.</jats:p

    Universal Murray’s law for optimised fluid transport in synthetic structures

    No full text
    Abstract Materials following Murray’s law are of significant interest due to their unique porous structure and optimal mass transfer ability. However, it is challenging to construct such biomimetic hierarchical channels with perfectly cylindrical pores in synthetic systems following the existing theory. Achieving superior mass transport capacity revealed by Murray’s law in nanostructured materials has thus far remained out of reach. We propose a Universal Murray’s law applicable to a wide range of hierarchical structures, shapes and generalised transfer processes. We experimentally demonstrate optimal flow of various fluids in hierarchically planar and tubular graphene aerogel structures to validate the proposed law. By adjusting the macroscopic pores in such aerogel-based gas sensors, we also show a significantly improved sensor response dynamics. In this work, we provide a solid framework for designing synthetic Murray materials with arbitrarily shaped channels for superior mass transfer capabilities, with future implications in catalysis, sensing and energy applications

    Metasurface spectrometers beyond resolution-sensitivity constraints

    No full text
    Optical spectroscopy plays an essential role across scientific research and industry for non-contact materials analysis1-3, increasingly through in-situ or portable platforms4-6. However, when considering low-light-level applications, conventional spectrometer designs necessitate a compromise between their resolution and sensitivity7,8, especially as device and detector dimensions are scaled down. Here, we report on a miniaturizable spectrometer platform where light throughput onto the detector is instead enhanced as the resolution is increased. This planar, CMOS-compatible platform is based around metasurface encoders designed to exhibit photonic bound states in the continuum9, where operational range can be altered or extended simply through adjusting geometric parameters. This system can enhance photon collection efficiency by up to two orders of magnitude versus conventional designs; we demonstrate this sensitivity advantage through ultra-low-intensity fluorescent and astrophotonic spectroscopy. This work represents a step forward for the practical utility of spectrometers, affording a route to integrated, chip-based devices that maintain high resolution and SNR without requiring prohibitively long integration times
    corecore