236 research outputs found

    Production and scavenging of reactive oxygen species and redox signaling during leaf and flower senescence: similar but different

    Get PDF
    Reactive oxygen species (ROS) play a key role in the regulation of many developmental processes, including senescence, and in plant responses to biotic and abiotic stresses. Several mechanisms of ROS generation and scavenging are similar, but others differ between senescing leaves and petals, despite these organs sharing a common evolutionary origin. Photosynthesis-derived ROS, nutrient remobilization, and reversibility of senescence are necessarily distinct features of the progression of senescence in the two organs. Furthermore, recent studies have revealed specific redox signaling processes that act in concert with phytohormones and transcription factors to regulate senescence-associated genes in leaves and petals. Here, we review some of the recent advances in our understanding of the mechanisms underpinning the production and elimination of ROS in these two organs. We focus on unveiling common and differential aspects of redox signaling in leaf and petal senescence, with the aim of linking physiological, biochemical, and molecular processes. We conclude that the spatiotemporal impact of ROS in senescing tissues differs between leaves and flowers, mainly due to the specific functionalities of these organs

    The Ascorbate-glutathione-α-tocopherol Triad in Abiotic Stress Response

    Get PDF
    The life of any living organism can be defined as a hurdle due to different kind of stresses. As with all living organisms, plants are exposed to various abiotic stresses, such as drought, salinity, extreme temperatures and chemical toxicity. These primary stresses are often interconnected, and lead to the overproduction of reactive oxygen species (ROS) in plants, which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA, which ultimately results in oxidative stress. Stress-induced ROS accumulation is counteracted by enzymatic antioxidant systems and non-enzymatic low molecular weight metabolites, such as ascorbate, glutathione and α-tocopherol. The above mentioned low molecular weight antioxidants are also capable of chelating metal ions, reducing thus their catalytic activity to form ROS and also scavenge them. Hence, in plant cells, this triad of low molecular weight antioxidants (ascorbate, glutathione and α-tocopherol) form an important part of abiotic stress response. In this work we are presenting a review of abiotic stress responses connected to these antioxidants

    Auxin involvement in tepal senescence and abscission in Lilium: a tale of two lilies

    Get PDF
    Petal wilting and/or abscission terminates the life of the flower. However, how wilting and abscission are coordinated is not fully understood. There is wide variation in the extent to which petals wilt before abscission, even between cultivars of the same species. For example, tepals of Lilium longiflorum wilt substantially, while those of the closely related Lilium longiflorum×Asiatic hybrid (L.A.) abscise turgid. Furthermore, close comparison of petal death in these two Lilium genotypes shows that there is a dramatic fall in fresh weight/dry weight accompanied by a sharp increase in ion leakage in late senescent L. longiflorum tepals, neither of which occur in Lilium L.A. Despite these differences, a putative abscission zone was identified in both lilies, but while the detachment force was reduced to zero in Lilium L.A., wilting of the fused tepals in L. longiflorum occurred before abscission was complete. Abscission is often negatively regulated by auxin, and the possible role of auxin in regulating tepal abscission relative to wilting was tested in the two lilies. There was a dramatic increase in auxin levels with senescence in L. longiflorum but not in Lilium L.A. Fifty auxin-related genes were expressed in early senescent L. longiflorum tepals including 12 ARF-related genes. In Arabidopsis, several ARF genes are involved in the regulation of abscission. Expression of a homologous transcript to Arabidopsis ARF7/19 was 8-fold higher during senescence in L. longiflorum compared with abscising Lilium L.A., suggesting a conserved role for auxin-regulated abscission in monocotyledonous ethylene-insensitive flowers

    Activation of ethylene-responsive p-hydroxyphenylpyruvate dioxygenase leads to increased tocopherol levels during ripening in mango

    Get PDF
    Mango is characterized by high tocopherol and carotenoid content during ripening. From a cDNA screen of differentially expressing genes during mango ripening, a full-length p-hydroxyphenylpyruvate dioxygenase (MiHPPD) gene homologue was isolated that encodes a key enzyme in the biosynthesis of tocopherols. The gene encoded a 432-amino-acid protein. Transcript analysis during different stages of ripening revealed that the gene is ripening related and rapidly induced by ethylene. The increase in MiHPPD transcript accumulation was followed by an increase in tocopherol levels during ripening. The ripening-related increase in MiHPPD expression was also seen in response to abscisic acid and to alesser extent to indole-3-acetic acid. The expression of MiHPPD was not restricted to fruits but was also seen in other tissues such as leaves particularly during senescence. The strong ethylene induction of MiHPPD was also seen in young leaves indicating that ethylene induction of MiHPPD is tissue independent. Promoter analysis of MiHPPD gene in tomato discs and leaves of stable transgenic lines of Arabidopsis showed that the cis elements for ripening-related, ethylene-responsive, and senescence-related expression resided within the 1590 nt region upstream of the ATG codon. Functionality of the gene was demonstrated by the ability of the expressed protein in bacteria to convert p-hydroxyphenylpyruvate to homogentisate. These results provide the first evidence for HPPD expression during ripening of a climacteric fruit

    Ultrastructural and histochemical analysis reveals ethylene-induced responses underlying reduced peel collapse in detached citrus fruit

    Full text link
    This is the accepted version of the following article: Cajuste, J.; García Breijo, FJ.; Reig Armiñana, J.; Lafuente, M. (2011). Ultrastructural and histochemical analysis reveals ethylene-induced responses underlying reduced peel collapse in detached citrus fruit. Microscopy Research and Technique. 74(1):970-979, which has been published in final form at http://dx.doi.org/10.1002/jemt.20983.Fruits from many citrus cultivars develop depressed areas in the flavedo (outer part of the peel) and albedo (inner part) following detachment. Although ultrastructural analysis may provide important information about multiple plant responses to stresses and external stimuli at the cell and tissue levels, and despite the proved efficacy of ethylene in reducing peel damage in citrus fruit, cytological responses of this horticultural crop to protective ethylene concentrations have not yet been reported. We show that applying high ethylene levels (2 mu L L(-1) for 14 days) causes sublethal stress as it favored the alteration of cuticle, vacuole, middle lamella and primary wall, especially in the albedo cells, but reduced peel collapse in detached mature "Navelate" oranges (C. sinensis, L. Osbeck) held under nonstressful environmental conditions (22 degrees C and 90-95% RH). Ethylene did not induce relevant changes in lignification but favored the deposition of pectic exudates and the release of sugars from degradation of cell polysaccharides including starch, cellulose, and pectins. In contrast, inhibiting ethylene perception by applying 1-methylcyclopropene (1-MCP) reduced these ethylene-related responses and favored degradation of cell membranes and peel damage. The overall results reflect that mature oranges tolerate high ethylene levels that might favor the activation of defense responses involving oxidative-stress related mechanisms and recycling of nutrients and carbon supply to enable cells to sustain respiration and cope with carbon deprivation stress caused by detachment. Microsc. Res. Tech. 74:970-979, 2011. (C) 2011 Wiley-Liss, Inc.Contract grant sponsor: Comision Interministerial de Ciencia y Tecnologia (CICYT), Spain; Contract grant number: AGL2002-1727; Contract grant number: AGL2009-11969; Contract grant sponsor: Conselleria D'Educacio Generalitat Valenciana, Spain; Contract grant number: PROMETEO/2010/010; Contract grant sponsor: SUPERA Programme, MexicoCajuste, J.; García Breijo, FJ.; Reig Armiñana, J.; Lafuente, M. (2011). Ultrastructural and histochemical analysis reveals ethylene-induced responses underlying reduced peel collapse in detached citrus fruit. Microscopy Research and Technique. 74(10):970-979. https://doi.org/10.1002/jemt.20983S9709797410Agustí, M. (2001). Histological and Physiological Characterization of Rind Breakdown of «Navelate» Sweet Orange. Annals of Botany, 88(3), 415-422. doi:10.1006/anbo.2001.1482Alférez, F., Agusti, M., & Zacarı́as, L. (2003). Postharvest rind staining in Navel oranges is aggravated by changes in storage relative humidity: effect on respiration, ethylene production and water potential. Postharvest Biology and Technology, 28(1), 143-152. doi:10.1016/s0925-5214(02)00120-5Alferez, F., Lluch, Y., & Burns, J. K. (2008). Phospholipase A2 and postharvest peel pitting in citrus fruit. Postharvest Biology and Technology, 49(1), 69-76. doi:10.1016/j.postharvbio.2008.01.010ALFEREZ, F., SINGH, S., UMBACH, A. L., HOCKEMA, B., & BURNS, J. K. (2005). Citrus abscission and Arabidopsis plant decline in response to 5-chloro-3-methyl-4-nitro-1H-pyrazole are mediated by lipid signalling. Plant, Cell and Environment, 28(11), 1436-1449. doi:10.1111/j.1365-3040.2005.01381.xAlonso, A. P., Vigeolas, H., Raymond, P., Rolin, D., & Dieuaide-Noubhani, M. (2005). A New Substrate Cycle in Plants. Evidence for a High Glucose-Phosphate-to-Glucose Turnover from in Vivo Steady-State and Pulse-Labeling Experiments with [13C]Glucose and [14C]Glucose. Plant Physiology, 138(4), 2220-2232. doi:10.1104/pp.105.062083Balandrán-Quintana, R. R., Mendoza-Wilson, A. M., Alvarez-Manilla, G., Bergmann, C. W., Vargas-Arispuro, I., & Martı́nez-Téllez, M. A. (2002). Effect of Pectic Oligomers on Physiological Responses of Chilling Injury in Discs Excised from Zucchini (Cucurbita pepo L.). Biochemical and Biophysical Research Communications, 290(1), 577-584. doi:10.1006/bbrc.2001.6237Benavente-García, O., Castillo, J., Marin, F. R., Ortuño, A., & Del Río, J. A. (1997). Uses and Properties ofCitrusFlavonoids. Journal of Agricultural and Food Chemistry, 45(12), 4505-4515. doi:10.1021/jf970373sCajuste, J. F., González-Candelas, L., Veyrat, A., García-Breijo, F. J., Reig-Armiñana, J., & Lafuente, M. T. (2010). Epicuticular wax content and morphology as related to ethylene and storage performance of ‘Navelate’ orange fruit. Postharvest Biology and Technology, 55(1), 29-35. doi:10.1016/j.postharvbio.2009.07.005Cajuste, J. F., & Lafuente, M. T. (2007). Ethylene-induced tolerance to non-chilling peel pitting as related to phenolic metabolism and lignin content in ‘Navelate’ fruit. Postharvest Biology and Technology, 45(2), 193-203. doi:10.1016/j.postharvbio.2007.01.019Establés-Ortiz, B., Lafuente, M. T., González-Candelas, L., Forment, J., & Gadea, J. (2009). TRANSCRIPTOMIC ANALYSIS OF ETHYLENE-INDUCED TOLERANCE TO NON-CHILLING PEEL PITTING IN CITRUS FRUIT. Acta Horticulturae, (839), 555-560. doi:10.17660/actahortic.2009.839.76Fiszman, S. M., Salvador, A., & Varela, P. (2005). Methodological developments in bread staling assessment: application to enzyme-supplemented brown pan bread. European Food Research and Technology, 221(5), 616-623. doi:10.1007/s00217-005-0082-2Fujii, H., Shimada, T., Sugiyama, A., Nishikawa, F., Endo, T., Nakano, M., … Omura, M. (2007). Profiling ethylene-responsive genes in mature mandarin fruit using a citrus 22K oligoarray. Plant Science, 173(3), 340-348. doi:10.1016/j.plantsci.2007.06.006Geigenberger, P., Merlo, L., Reimholz, R., & Stitt, M. (1994). When growing potato tubers are detached from their mother plant there is a rapid inhibition of starch synthesis, involving inhibition of ADP-glucose pyrophosphorylase. Planta, 193(4), 486-493. doi:10.1007/bf02411552Gonzalez-Candelas, L., Alamar, S., Sanchez-Torres, P., Zacarias, L., & Marcos, J. F. (2010). A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection. BMC Plant Biology, 10(1), 194. doi:10.1186/1471-2229-10-194Günthardt-Goerg, M. S., & Vollenweider, P. (2007). Linking stress with macroscopic and microscopic leaf response in trees: New diagnostic perspectives. Environmental Pollution, 147(3), 467-488. doi:10.1016/j.envpol.2006.08.033Han, J., Tian, S.-P., Meng, X.-H., & Ding, Z.-S. (2006). Response of physiologic metabolism and cell structures in mango fruit to exogenous methyl salicylate under low-temperature stress. Physiologia Plantarum, 128(1), 125-133. doi:10.1111/j.1399-3054.2006.00731.xHatfield, R., & Vermerris, W. (2001). Lignin Formation in Plants. The Dilemma of Linkage Specificity. Plant Physiology, 126(4), 1351-1357. doi:10.1104/pp.126.4.1351Holland, N., Menezes, H. C., & Lafuente, M. T. (2002). Carbohydrates as related to the heat-induced chilling tolerance and respiratory rate of ‘Fortune’ mandarin fruit harvested at different maturity stages. Postharvest Biology and Technology, 25(2), 181-191. doi:10.1016/s0925-5214(01)00182-xHolland, N., Menezes, H. C., & Lafuente, M. T. (2005). Carbohydrate Metabolism As Related to High-Temperature Conditioning and Peel Disorders Occurring during Storage of Citrus Fruit. Journal of Agricultural and Food Chemistry, 53(22), 8790-8796. doi:10.1021/jf051293oKarakurt, Y., & Huber, D. J. (2004). Ethylene-induced gene expression, enzyme activities, and water soaking in immature and ripe watermelon (Citrullus lanatus) fruit. Journal of Plant Physiology, 161(4), 381-388. doi:10.1078/0176-1617-01221Lafuente, M. T., & Sala, J. M. (2002). Abscisic acid levels and the influence of ethylene, humidity and storage temperature on the incidence of postharvest rindstaning of ‘Navelina’ orange (Citrus sinensis L. Osbeck) fruit. Postharvest Biology and Technology, 25(1), 49-57. doi:10.1016/s0925-5214(01)00162-4Lafuente, M. T., Sala, J. M., & Zacarias, L. (2004). Active Oxygen Detoxifying Enzymes and Phenylalanine Ammonia-lyase in the Ethylene-Induced Chilling Tolerance in Citrus Fruit. Journal of Agricultural and Food Chemistry, 52(11), 3606-3611. doi:10.1021/jf035185iHyun Lee, S., Sook Chae, H., Kyun Lee, T., Hee Kim, S., Ho Shin, S., Huey Cho, B., … Sung Lee, W. (1998). Ethylene-Mediated Phospholipid Catabolic Pathway in Glucose-Starved Carrot Suspension Cells. Plant Physiology, 116(1), 223-229. doi:10.1104/pp.116.1.223Lee, E.-J., Matsumura, Y., Soga, K., Hoson, T., & Koizumi, N. (2007). Glycosyl Hydrolases of Cell Wall are Induced by Sugar Starvation in Arabidopsis. Plant and Cell Physiology, 48(3), 405-413. doi:10.1093/pcp/pcm009Lisker, N., Cohen, L., Chalutz, E., & Fuchs, Y. (1983). Fungal infections suppress ethylene-induced phenylalanine ammonia-lyase activity in grapefruits. Physiological Plant Pathology, 22(3), 331-338. doi:10.1016/s0048-4059(83)81020-0Lliso, I., Tadeo, F. R., Phinney, B. S., Wilkerson, C. G., & Talón, M. (2007). Protein Changes in the Albedo of Citrus Fruits on Postharvesting Storage. Journal of Agricultural and Food Chemistry, 55(22), 9047-9053. doi:10.1021/jf071198aLurie, S., & Crisosto, C. H. (2005). Chilling injury in peach and nectarine. Postharvest Biology and Technology, 37(3), 195-208. doi:10.1016/j.postharvbio.2005.04.012Martínez-Téllez, M. A., & Lafuente, M. T. (1997). Effect of high temperature conditioning on ethylene, phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase activities in flavedo of chilled ‹Fortune› mandarin fruit. Journal of Plant Physiology, 150(6), 674-678. doi:10.1016/s0176-1617(97)80282-9McCollum, G., & Maul, P. (2007). 1-Methylcyclopropene Inhibits Degreening But Stimulates Respiration and Ethylene Biosynthesis in Grapefruit. HortScience, 42(1), 120-124. doi:10.21273/hortsci.42.1.120Munné-Bosch, S., Peñuelas, J., Asensio, D., & Llusià, J. (2004). Airborne Ethylene May Alter Antioxidant Protection and Reduce Tolerance of Holm Oak to Heat and Drought Stress. Plant Physiology, 136(2), 2937-2947. doi:10.1104/pp.104.050005Porat, R., Weiss, B., Cohen, L., Daus, A., & Aharoni, N. (2004). Reduction of postharvest rind disorders in citrus fruit by modified atmosphere packaging. Postharvest Biology and Technology, 33(1), 35-43. doi:10.1016/j.postharvbio.2004.01.010Purvis, A. C., & Yelenosky, G. (1983). Translocation of Carbohydrates and Proline in Young Grapefruit Trees at Low Temperatures. Plant Physiology, 73(4), 877-880. doi:10.1104/pp.73.4.877Rawyler, A., Pavelic, D., Gianinazzi, C., Oberson, J., & Braendle, R. (1999). Membrane Lipid Integrity Relies on a Threshold of ATP Production Rate in Potato Cell Cultures Submitted to Anoxia. Plant Physiology, 120(1), 293-300. doi:10.1104/pp.120.1.293Reig-Armiñana, J., Calatayud, V., Cerveró, J., Garcı́a-Breijo, F. ., Ibars, A., & Sanz, M. . (2004). Effects of ozone on the foliar histology of the mastic plant (Pistacia lentiscus L.). Environmental Pollution, 132(2), 321-331. doi:10.1016/j.envpol.2004.04.006Sala, J. M., & Lafuente, M. T. (2004). Antioxidant enzymes activities and rindstaining in ‘Navelina’ oranges as affected by storage relative humidity and ethylene conditioning. Postharvest Biology and Technology, 31(3), 277-285. doi:10.1016/j.postharvbio.2003.10.002Saltveit, M. E. (1999). Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biology and Technology, 15(3), 279-292. doi:10.1016/s0925-5214(98)00091-xSMITH, A. M., & STITT, M. (2007). Coordination of carbon supply and plant growth. Plant, Cell & Environment, 30(9), 1126-1149. doi:10.1111/j.1365-3040.2007.01708.xYu, S.-M. (1999). Cellular and Genetic Responses of Plants to Sugar Starvation. Plant Physiology, 121(3), 687-693. doi:10.1104/pp.121.3.68

    Hydrogen peroxide is involved in the acclimation of the Mediterranean shrub, Cistus albidus L., to summer drought

    Get PDF
    This study evaluated the possible role of hydrogen peroxide (H2O2) in the acclimation of a Mediterranean shrub, Cistus albidus L., to summer drought growing under Mediterranean field conditions. For this purpose, changes in H2O2 concentrations and localization throughout a year were analysed. H2O2 changes in response to environmental conditions in parallel with changes in abscisic acid (ABA) and oxidative stress markers, together with lignin accumulation, xylem and sclerenchyma differentiation, and leaf area were also investigated. During the summer drought, leaf H2O2 concentrations increased 11-fold, reaching values of 10 μmol g−1 dry weight (DW). This increase occurred mainly in mesophyll cell walls, xylem vessels, and sclerenchyma cells in the differentiation stage. An increase in ABA levels preceded that of H2O2, but both peaked at the same time in conditions of prolonged stress. C. albidus plants tolerated high concentrations of H2O2 because of its localization in the apoplast of mesophyll cells, xylem vessels, and in differentiating sclerenchyma cells. The increase in ABA, and consequently of H2O2, in plants subjected to drought stress might induce a 3.5-fold increase in ascorbic acid (AA), which maintained and even decreased its oxidative status, thus protecting plants from oxidative damage. After recovery from drought following late-summer and autumn rainfall, a decrease in ABA, H2O2, and AA to their basal levels (∼60 pmol g−1 DW, ∼1 μmol g−1 DW, and ∼20 μmol g−1 DW) was observed

    JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis

    No full text
    The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H(2)O(2))-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1 overexpression strongly delays senescence, dampens intracellular H(2)O(2) levels, and enhances tolerance to various abiotic stresses, whereas in jub1-1 knockdown plants, precocious senescence and lowered abiotic stress tolerance are observed. A JUB1 binding site containing a RRYGCCGT core sequence is present in the promoter of DREB2A, which plays an important role in abiotic stress responses. JUB1 transactivates DREB2A expression in mesophyll cell protoplasts and transgenic plants and binds directly to the DREB2A promoter. Transcriptome profiling of JUB1 overexpressors revealed elevated expression of several reactive oxygen species-responsive genes, including heat shock protein and glutathione S-transferase genes, whose expression is further induced by H(2)O(2) treatment. Metabolite profiling identified elevated Pro and trehalose levels in JUB1 overexpressors, in accordance with their enhanced abiotic stress tolerance. We suggest that JUB1 constitutes a central regulator of a finely tuned control system that modulates cellular H(2)O(2) level and primes the plants for upcoming stress through a gene regulatory network that involves DREB2A

    Growth rate evolution in improved environments under Prodigal Son dynamics

    Get PDF
    I use an individual‐based model to investigate the evolution of cell division rates in asexual populations under chronic environmental enrichment. I show that maintaining increased growth rates over hundreds of generations following environmental improvement can be limited by increases in cellular damage associated with more rapid reproduction. In the absence of further evolution to either increase damage tolerance or decrease the cost of repair or rate of damage, environmental improvement does not reliably lead to long‐term increases in reproductive rate in microbes. Here, more rapid cell division rates also increases damage, leading to selection for damage avoidance or repair, and a subsequent decrease in population growth, which I call Prodigal Son dynamics, because the consequences of ‘living fast’ force a return to ancestral growth rates. Understanding the conditions under which environmental enrichment is expected to sustainably increase cell division rates is important in applications that require rapid cell division (e.g. biofuel reactors) or seek to avoid the emergence of rapid cell division rates (controlling biofouling)
    corecore