82 research outputs found

    Genome-wide association study of inhaled corticosteroid response in admixed children with asthma

    Get PDF
    Background Inhaled corticosteroids (ICS) are the most widely prescribed and effective medication to control asthma symptoms and exacerbations. However, many children still have asthma exacerbations despite treatment, particularly in admixed populations, such as Puerto Ricans and African Americans. A few genome‐wide association studies (GWAS) have been performed in European and Asian populations, and they have demonstrated the importance of the genetic component in ICS response. Objective We aimed to identify genetic variants associated with asthma exacerbations in admixed children treated with ICS and to validate previous GWAS findings. Methods A meta‐analysis of two GWAS of asthma exacerbations was performed in 1347 admixed children treated with ICS (Hispanics/Latinos and African Americans), analysing 8.7 million genetic variants. Those with P ≤ 5 × 10−6 were followed up for replication in 1697 asthmatic patients from six European studies. Associations of ICS response described in published GWAS were followed up for replication in the admixed populations. Results A total of 15 independent variants were suggestively associated with asthma exacerbations in admixed populations (P ≤ 5 × 10−6). One of them, located in the intergenic region of APOBEC3B and APOBEC3C, showed evidence of replication in Europeans (rs5995653, P = 7.52 × 10−3) and was also associated with change in lung function after treatment with ICS (P = 4.91 × 10−3). Additionally, the reported association of the L3MBTL4‐ARHGAP28 genomic region was confirmed in admixed populations, although a different variant was identified. Conclusions and clinical relevance This study revealed the novel association of APOBEC3B and APOBEC3C with asthma exacerbations in children treated with ICS and replicated previously identified genomic regions. This contributes to the current knowledge about the multiple genetic markers determining responsiveness to ICS which could lead in the future the clinical identification of those asthma patients who are not able to respond to such treatment

    Pharmacogenomic associations of adverse drug reactions in asthma: systematic review and research prioritisation

    Get PDF
    A systematic review of pharmacogenomic studies capturing adverse drug reactions (ADRs) related to asthma medications was undertaken, and a survey of Pharmacogenomics in Childhood Asthma (PiCA) consortia members was conducted. Studies were eligible if genetic polymorphisms were compared with suspected ADR(s) in a patient with asthma, as either a primary or secondary outcome. Five studies met the inclusion criteria. The ADRs and polymorphisms identified were change in lung function tests (rs1042713), adrenal suppression (rs591118), and decreased bone mineral density (rs6461639) and accretion (rs9896933, rs2074439). Two of these polymorphisms were replicated within the paper, but none had external replication. Priorities from PiCA consortia members (representing 15 institution in eight countries) for future studies were tachycardia (SABA/LABA), adrenal suppression/crisis and growth suppression (corticosteroids), sleep/behaviour disturbances (leukotriene receptor antagonists), and nausea and vomiting (theophylline). Future pharmacogenomic studies in asthma should collect relevant ADR data as well as markers of efficacy

    Measurement of nuclear modification factors of gamma(1S)), gamma(2S), and gamma(3S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The cross sections for ϒ(1S), ϒ(2S), and ϒ(3S) production in lead-lead (PbPb) and proton-proton (pp) collisions at √sNN = 5.02 TeV have been measured using the CMS detector at the LHC. The nuclear modification factors, RAA, derived from the PbPb-to-pp ratio of yields for each state, are studied as functions of meson rapidity and transverse momentum, as well as PbPb collision centrality. The yields of all three states are found to be significantly suppressed, and compatible with a sequential ordering of the suppression, RAA(ϒ(1S)) > RAA(ϒ(2S)) > RAA(ϒ(3S)). The suppression of ϒ(1S) is larger than that seen at √sNN = 2.76 TeV, although the two are compatible within uncertainties. The upper limit on the RAA of ϒ(3S) integrated over pT, rapidity and centrality is 0.096 at 95% confidence level, which is the strongest suppression observed for a quarkonium state in heavy ion collisions to date. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.Peer reviewe

    Lumpy Demand Forecasting Using Neural Networks

    No full text
    The current study applies neural network (NN) modeling in forecasting lumpy demand. It is, to the best of our knowledge, the first such study. Our study compares the performance of NN forecasts to those using three traditional time-series methods (single exponential smoothing, Croston\u27s method, and the Syntetos–Boylan approximation). We find NN models to generally perform better than the traditional methods, using three different performance measures. We also independently validate earlier findings that the Syntetos–Boylan approximation performs better than the Croston\u27s and single exponential smoothing methods in lumpy demand forecasting

    Coexisting shape- and high-K isomers in the shape transitional nucleus 188Pt

    Get PDF
    A high-spin study of the shape transitional nucleus 188Pt reveals the unusual coexistence of both shape- and K-isomeric states. Reduced B(E2) transition probabilities for decays from these states inferred from the data clearly establish their hindered character. In addition to other excited structures, a rotational band built upon the K isomer is identified, and its configuration has been assigned through an analysis of alignments and branching ratios. The shape evolution with spin in this nucleus has been inferred from both experimental observables and cranking calculations. The yrast positive parity structure appears to evolve from a near-prolate deformed shape through triaxial at intermediate excitation, and eventually to oblate at the highest spins. Keywords: Shape coexistence, High-spin states, High-K isomer, Shape phase transition, Shape isome

    Molecular architecture using novel types of non-covalent pi-interactions involving aromatic neutrals, aromatic cations and pi-anions

    No full text
    A solid-state complex utilizing non-covalent interactions between two aromatic cations is synthesized and characterized. The X-ray study of the structure shows that the anion templated pi(+)-pi(+) interactions are the major driving force in the crystal packing, while pi(+)-pi, pi-pi, pi-anion and pi(+)-anion interactions assist the overall stabilization of self-assembly. In addition, we also identify the cation-mediated non-covalent interaction between two pi anions (pi(-)-pi(-) interaction). The interaction energies of the important driving forces (pi(+)-pi(+), pi(+)-pi, pi-anion, pi(+)-anion, and pi(-)-pi(-) interactions) observed in the crystal structure are calculated using dispersion-corrected density functional theory (DFT-D).close221
    corecore