162 research outputs found

    Extended Jacobian Elliptic Function Expansion Method and Its Applications in Mathematical Physics

    Get PDF
    In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to some nonlinear evolution equations which play an important role in mathematical physics

    Traveling wave solutions for the Couple Boiti-Leon-Pempinelli System by using extended Jacobian elliptic function expansion method

    Get PDF
    In this work, an extended Jacobian elliptic function expansion method is pro-posed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the Couple Boiti-Leon-Pempinelli System which plays an important role in mathematical physics

    Performance of Reinforced Concrete Flat Slabs Having GFRP Gratings

    Get PDF
    A thorough study of the literature indicated that there is not much relevant research on the application of GFRP gratings. Otherwise, extensive study has been done on FRP bars, laminates, sheets, strips, and rods. This study proposes a novel approach to improve the punching shear resistance of flat slab column connections by inserting GFRP gratings across the slab thickness. The results of seven specimens tested under vertical static loading are presented, considering the influence of the grating’s characteristics. All specimens were tested as simply supported slabs under one point of static loading. Experimental results, including crack patterns, slab deflection, concrete compressive strain, tensile steel strain, GFRP grating strain, and failure load, were recorded using extensive electric instrumentation. Test results revealed an enhancement in the failure load ranging between 9.03% and 27.67% for the specimens provided with the GFRP grating. In addition, a nonlinear finite element numerical model analysis was carried out using the ANSYS 15 program. Correlational studies based on the load-deflection response and crack patterns were utilized, resulting in a good agreement between numerical simulations and experimental results with differences ranging from 1.0% to 8.0%. &nbsp

    Traveling solitary wave solutions for the symmetric regularized long-wave equation

    Get PDF
    In this paper, we employ the extended tanh function method to nd the exact traveling wave solutions involving parameters of the symmetric regularized long- wave equation. When these parameters are taken to be special values, the solitary wave solutions are derived from the exact traveling wave solutions. These studies reveal that the symmetric regularized long-wave equation has a rich varietyof solutions

    Selection of productivity improvement techniques via mathematical modeling

    Get PDF
    This paper presents a new mathematical model to select an optimal combination of productivity improvement techniques. The proposed model of this paper considers four-stage cycle productivity and the productivity is assumed to be a linear function of fifty four improvement techniques. The proposed model of this paper is implemented for a real-world case study of manufacturing plant. The resulted problem is formulated as a mixed integer programming which can be solved for optimality using traditional methods. The preliminary results of the implementation of the proposed model of this paper indicate that the productivity can be improved through a change on equipments and it can be easily applied for both manufacturing and service industries

    Retrofitting of Box Section Concrete Beams to Resist Shear and Torsion Using Near-Surface-Mount (NSM) GFRP Stirrups

    Get PDF
    There are a few kinds of research about box section Reinforced Concrete (RC) beams under the effect of combined shear and torsional stresses. In the present research, the concept of adding external strengthening, in the transverse direction, is adopted. The paper focuses on using Glass Fiber Reinforced Polymer GFRP ropes as near-surface mount stirrups. Nine box-section concrete specimens were decanted and tested. Three variables are adopted, (1) GFRP stirrups diameter, (2) GFRP stirrups inclination, and (3) GFRP stirrups spacing. The experimental results showed considerable enhancement in the shear capacity of the strengthened beams by 8 to 56% depending on the effectiveness of the studied parameters. Ductility and toughness were improved when more intensive strengthening schemes were adopted. The shear capacity of all tested beams based on Egyptian code ECP 208–2019 is calculated and compared with that from American code ACI 440–2019 and Canadian code CSA-A23.3-04. The shear capacity from both Egyptian and American codes compared with experimental loads. The analytical results are conservative in some cases and unconservative in others while the analytical results in general are conservative. The Canadian code CSA-A23.3-04 is unconservative compared to the experimental results for the range of the studied parameters and specimens. &nbsp

    Structure of New Solitary Solutions for The Schwarzian Korteweg De Vries Equation And (2+1)-Ablowitz-Kaup-Newell-Segur Equation

    Get PDF
    In this research, we introduce and represent the modified Khater method on two basic models in the optical fiber. These two models describe the dynamics of the wave movement in the optical fiber.  It is a new modification of new recent method which developed by Mostafa M. A. Khater in 2017. We implement this new modified technique on Schwarzian Korteweg de Vries equation and (2+1)-Ablowitz-Kaup-Newell-Segur equation. This modification of Khater method produces more closed solutions than many other methods. Schwarzian Korteweg de Vries (SKdV) equation has a closed relationship with (2+1)-Ablowitz- Kaup-Newell-Segur equation. Schwarzian Korteweg de Vries equation prescribes the location in a micro-segment of space and motion of the isolated waves in varied fields which localized in a tiny portion of space. It is a great and basic system in fluid mechanics, nonlinear optics, plasma physics, and quantum field theory

    Enhancement of punching shear behavior of reinforced concrete flat slabs using GFRP grating

    Get PDF
    The literature review showed insufficient relevant research on the application of Glass-Fiber-Reinforced-Polymers (GFRP) gratings in the structural elements, while GFRP bars, laminate, sheets, and strips, have been extensively explored. This research aims to present a proposal for a new reinforcing system using GFRP gratings to improve the punching shear resistance of RC flat slabs. Results of seven specimens tested experimentally under vertical static loading are displayed, taking into account the influence of the gratings variables. Test results revealed an improvement in the ultimate load ranging between 9.03% and 27.67% for the specimens strengthened by the proposed GFRP grating system. A Nonlinear Finite Element Analysis (NLFEA) was carried out using the ANSYS program with correlational evaluation using load-deflection response and cracking pattern, which resulted in a good convergence of numerical simulations and experimental performance results ranging from 1.0% to 8.0%. Key parameters, namely the concrete compressive strength, steel reinforcement yield strength, main steel reinforcement ratio, secondary steel reinforcement ratio, column dimensions, slab thickness, concrete cover, and GFRP gratings characteristics, were investigated through a parametric study adopting NLFEA by the ANSYS program, where the output results were compared to the recent code provision

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations

    Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2.5 air pollution, 1990-2019 : an analysis of data from the Global Burden of Disease Study 2019

    Get PDF
    Background Experimental and epidemiological studies indicate an association between exposure to particulate matter (PM) air pollution and increased risk of type 2 diabetes. In view of the high and increasing prevalence of diabetes, we aimed to quantify the burden of type 2 diabetes attributable to PM2.5 originating from ambient and household air pollution.Methods We systematically compiled all relevant cohort and case-control studies assessing the effect of exposure to household and ambient fine particulate matter (PM2.5) air pollution on type 2 diabetes incidence and mortality. We derived an exposure-response curve from the extracted relative risk estimates using the MR-BRT (meta-regression-Bayesian, regularised, trimmed) tool. The estimated curve was linked to ambient and household PM2.5 exposures from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019, and estimates of the attributable burden (population attributable fractions and rates per 100 000 population of deaths and disability-adjusted life-years) for 204 countries from 1990 to 2019 were calculated. We also assessed the role of changes in exposure, population size, age, and type 2 diabetes incidence in the observed trend in PM2.5-attributable type 2 diabetes burden. All estimates are presented with 95% uncertainty intervals.Findings In 2019, approximately a fifth of the global burden of type 2 diabetes was attributable to PM2.5 exposure, with an estimated 3.78 (95% uncertainty interval 2.68-4.83) deaths per 100 000 population and 167 (117-223) disability-adjusted life-years (DALYs) per 100 000 population. Approximately 13.4% (9.49-17.5) of deaths and 13.6% (9.73-17.9) of DALYs due to type 2 diabetes were contributed by ambient PM2.5, and 6.50% (4.22-9.53) of deaths and 5.92% (3.81-8.64) of DALYs by household air pollution. High burdens, in terms of numbers as well as rates, were estimated in Asia, sub-Saharan Africa, and South America. Since 1990, the attributable burden has increased by 50%, driven largely by population growth and ageing. Globally, the impact of reductions in household air pollution was largely offset by increased ambient PM2.5.Interpretation Air pollution is a major risk factor for diabetes. We estimated that about a fifth of the global burden of type 2 diabetes is attributable PM2.5 pollution. Air pollution mitigation therefore might have an essential role in reducing the global disease burden resulting from type 2 diabetes. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe
    • …
    corecore