2,157 research outputs found

    Preserving the impossible: conservation of soft-sediment hominin footprint sites and strategies for three-dimensional digital data capture.

    Get PDF
    Human footprints provide some of the most publically emotive and tangible evidence of our ancestors. To the scientific community they provide evidence of stature, presence, behaviour and in the case of early hominins potential evidence with respect to the evolution of gait. While rare in the geological record the number of footprint sites has increased in recent years along with the analytical tools available for their study. Many of these sites are at risk from rapid erosion, including the Ileret footprints in northern Kenya which are second only in age to those at Laetoli (Tanzania). Unlithified, soft-sediment footprint sites such these pose a significant geoconservation challenge. In the first part of this paper conservation and preservation options are explored leading to the conclusion that to 'record and digitally rescue' provides the only viable approach. Key to such strategies is the increasing availability of three-dimensional data capture either via optical laser scanning and/or digital photogrammetry. Within the discipline there is a developing schism between those that favour one approach over the other and a requirement from geoconservationists and the scientific community for some form of objective appraisal of these alternatives is necessary. Consequently in the second part of this paper we evaluate these alternative approaches and the role they can play in a 'record and digitally rescue' conservation strategy. Using modern footprint data, digital models created via optical laser scanning are compared to those generated by state-of-the-art photogrammetry. Both methods give comparable although subtly different results. This data is evaluated alongside a review of field deployment issues to provide guidance to the community with respect to the factors which need to be considered in digital conservation of human/hominin footprints

    Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning

    Get PDF
    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.

    Effect of scavenger receptor BI antagonist ITX5061 in patients with hepatitis C virus infection undergoing liver transplantation

    Get PDF
    Hepatitis C virus (HCV) entry inhibitors have been hypothesized to prevent infection of the liver after transplantation. ITX5061 is a Scavenger Receptor B-I (SR-BI) antagonist that blocks HCV entry and infection in vitro. We assessed the safety and efficacy of ITX5061 to limit HCV infection of the graft. The study included 23 HCV infected patients undergoing liver transplantation. The first 13 "control" patients did not receive drug. The subsequent 10 patients received ITX5061 150 mg immediately pre- and post-transplant, and daily for 1 week thereafter. ITX5061 pharmacokinetics and plasma HCV RNA were quantified. Viral genetic diversity was measured by ultradeep pyrosequencing. ITX5061 was well tolerated with measurable plasma concentrations during therapy. Whilst the median HCV RNA reduction was greater in ITX treated patients at all time points in the first week after transplantation there was no difference in the overall change in the area over the HCV RNA curve in the 7-day treatment period. However, in genotype 1 infected patients treatment was associated with a sustained reduction in HCV RNA levels compared to the control group (area over the HCV RNA curve analysis, p=0.004). Ultradeep pyrosequencing revealed a complex and evolving pattern of HCV variants infecting the graft during the first week. ITX5061 significantly limited viral evolution where the median divergence between day 0 and day 7 was 3.5% in the control group compared to 0.1% in the treated group.CONCLUSIONS: ITX5061 reduces plasma HCV RNA post transplant notably in genotype 1 infected patients and slows viral evolution. Following liver transplantation the likely contribution of extrahepatic reservoirs of HCV necessitates combining entry inhibitors such as ITX5061 with inhibitors of replication in future studies. Clinicaltrials.gov NCT01292824. This article is protected by copyright. All rights reserved.</p

    The toxicity of the methylimidazolium ionic liquids, with a focus on M8OI and hepatic effects

    Get PDF
    Ionic liquids are a diverse range of charged chemicals with low volatility and often liquids at ambient temperatures. This characteristic has in part lead to them being considered environmentally-friendly replacements for existing volatile solvents. However, methylimidazolium ionic liquids are slow to break down in the environment and a recent study at Newcastle detected 1 octyl 3 methylimidazolium (M8OI) – an 8 carbon variant methylimidazolium ionic liquid - in soils in close proximity to a landfill site. The current M8OI toxicity database in cultured mammalian cells, in experimental animal studies and in model indicators of environmental impact are reviewed. Selected analytical data from the Newcastle study suggest the soils in close proximity to the landfill site, an urban soil lacking overt contamination, had variable levels of M8OI. The potential for M8OI - or a structurally related ionic liquid – to trigger primary biliary cholangitis (PBC), an autoimmune liver disease thought to be triggered by an unknown agent(s) in the environment, is reviewed

    The Mice at play in the CALIFA survey: A case study of a gas-rich major merger between first passage and coalescence

    Get PDF
    We present optical integral field spectroscopy (IFS) observations of the Mice, a major merger between two massive (>10^11Msol) gas-rich spirals NGC4676A and B, observed between first passage and final coalescence. The spectra provide stellar and gas kinematics, ionised gas properties and stellar population diagnostics, over the full optical extent of both galaxies. The Mice provide a perfect case study highlighting the importance of IFS data for improving our understanding of local galaxies. The impact of first passage on the kinematics of the stars and gas has been significant, with strong bars likely induced in both galaxies. The barred spiral NGC4676B exhibits a strong twist in both its stellar and ionised gas disk. On the other hand, the impact of the merger on the stellar populations has been minimal thus far: star formation induced by the recent close passage has not contributed significantly to the global star formation rate or stellar mass of the galaxies. Both galaxies show bicones of high ionisation gas extending along their minor axes. In NGC4676A the high gas velocity dispersion and Seyfert-like line ratios at large scaleheight indicate a powerful outflow. Fast shocks extend to ~6.6kpc above the disk plane. The measured ram pressure and mass outflow rate (~8-20Msol/yr) are similar to superwinds from local ULIRGs, although NGC4676A has only a moderate infrared luminosity of 3x10^10Lsol. Energy beyond that provided by the mechanical energy of the starburst appears to be required to drive the outflow. We compare the observations to mock kinematic and stellar population maps from a merger simulation. The models show little enhancement in star formation during and following first passage, in agreement with the observations. We highlight areas where IFS data could help further constrain the models.Comment: 23 pages, 13 figures, accepted to A&A. A version with a complete set of high resolution figures is available here: http://www-star.st-and.ac.uk/~vw8/resources/mice_v8_astroph.pd

    The Ews-ERG Fusion Protein Can Initiate Neoplasia from Lineage-Committed Haematopoietic Cells

    Get PDF
    The EWS-ERG fusion protein is found in human sarcomas with the chromosomal translocation t(21;22)(q22;q12), where the translocation is considered to be an initiating event in sarcoma formation within uncommitted mesenchymal cells, probably long-lived progenitors capable of self renewal. The fusion protein may not therefore have an oncogenic capability beyond these progenitors. To assess whether EWS-ERG can be a tumour initiator in cells other than mesenchymal cells, we have analysed Ews-ERG fusion protein function in a cellular environment not typical of that found in human cancers, namely, committed lymphoid cells. We have used Ews-ERG invertor mice having an inverted ERG cDNA cassette flanked by loxP sites knocked in the Ews intron 8, crossed with mice expressing Cre recombinase under the control of the Rag1 gene to give conditional, lymphoid-specific expression of the fusion protein. Clonal T cell neoplasias arose in these mice. This conditional Ews gene fusion model of tumourigenesis shows that Ews-ERG can cause haematopoietic tumours and the precursor cells are committed cells. Thus, Ews-ERG can function in cells that do not have to be pluripotent progenitors or mesenchymal cells

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    • 

    corecore