104 research outputs found
CatĂ©gories de lâentendement et modes de valorisation professionnelle chez les formateurs de professeurs des Ă©coles
Parmi les qualitĂ©s que doivent acquĂ©rir les professeurs des Ă©coles stagiaires (PES), la capacitĂ© Ă se situer par rapport aux textes rĂ©glementaires apparaĂźt centrale. Lâobjectif de cet article est dâanalyser la maniĂšre dont les formateurs tentent de transmettre aux PES un « bon » usage de ces prescriptions. LâenquĂȘte identifie deux formes dâappropriation des textes de cadrage recommandĂ©es par les formateurs. Les PES sont, dâune part, incitĂ©s Ă se mettre en conformitĂ© avec les normes explicites qui encadrent le mĂ©tier de professeur des Ă©coles. Mais les formateurs les invitent, dâautre part, Ă ne pas recourir mĂ©caniquement Ă ces prescriptions, voire Ă sâen Ă©manciper. En nous inspirant des apports de la sociologie des professions, nous tentons de renouveler les interprĂ©tations de cette tension dans les catĂ©gories de lâentendement des professionnels exerçant au sein de lâinstitution scolaire. Nous analysons le rapport ambivalent des formateurs aux normes qui cadrent leur activitĂ© comme la consĂ©quence dâune logique de maximisation des modes de valorisation professionnelle accessibles aux professions intermĂ©diaires.Among all the skills that trainee teachers should gain during initial training, the ability to make âgoodâ use and understand the professional or institutional regulatory framework is critical. This paper intends to study the advice given by trainers to trainee teachers to help them use this framework to a satisfactory standard. Two types of recommendation have been identified. On the one hand, trainee teachers are told to adhere to the standards which teachers abide by. On the other hand, they are also encouraged not to systematically apply these standards and even to distance themselves from them. Inspired by the findings of sociology of professions, we shall attempt to provide new explanations for the tension in the categories of comprehension for professionals working in schools. We shall analyse the ambivalent relationship trainers have to the standards which structure their role by seeing it as a consequence of the professional development strategies available to intermediate professions
Troubles dans les apprentissages : neurosciences cognitives et difficultés scolaires
Cet article porte sur le recours croissant aux neurosciences cognitives pour interprĂ©ter et traiter les difficultĂ©s scolaires. Ces usages sâexpliquent dâabord par le travail de construction des neurosciences cognitives en discipline pragmatique orientĂ©e vers lâaction Ă travers un matĂ©rialisme scientifique prĂ©sentĂ© comme ouvert et libĂ©rĂ© des a priori idĂ©ologiques. Ils ont Ă©tĂ© ensuite favorisĂ©s par la constitution des « troubles spĂ©cifiques des apprentissages » en problĂšme de santĂ© publique dont lâĂ©tude et la rĂ©solution supposent lâaction conjointe des chercheurs et des professionnels de santĂ©. Lâentreprise de lĂ©gitimation de la rĂ©ponse des neurosciences aux difficultĂ©s dâapprentissage a nĂ©anmoins bĂ©nĂ©ficiĂ© dâautres relais. Deux dâentre eux seront ici examinĂ©s, Ă savoir, dâune part, les hommes politiques, hauts fonctionnaires et experts chargĂ©s dâĂ©laborer et de mettre en Ćuvre une rĂ©forme pĂ©dagogique, et, dâautre part, les parents dâĂ©lĂšves en difficultĂ© dans le cadre scolaire.This article deals with the increasing uses of cognitive neurosciences to interpret and address learning difficulties. These uses are first explained by the progressive recognition of cognitive neurosciences as an action-oriented pragmatic discipline, whose scientific materialism is supposed to be free from ideological a priori. They were also fostered by the construction of âspecific learning disordersâ as a public health problem whose study and resolution suppose the joint action of researchers and health professionals. The legitimation of the cognitive neurosciences approach of school difficulties nevertheless was supported by other actors. Two sets of actors will be examined here, namely, on the one hand, politicians, top civil servants and experts charged to work out and implement education policies, and, on the other hand, the parents of students with learning difficulties
Interaction between p22(phox) and Nox4 in the endoplasmic reticulum suggests a unique mechanism of NADPH oxidase complex formation.
The p22(phox) protein is an essential component of the phagocytic- and inner ear NADPH oxidases but its relationship to other Nox proteins is less clear. We have studied the role of p22(phox) in the TGF-beta1-stimulated H2O2 production of primary human and murine fibroblasts. TGF-beta1 induced H2O2 release of the examined cells, and the response was dependent on the expression of both Nox4 and p22(phox). Interestingly, the p22(phox) protein was present in the absence of any detectable Nox/Duox expression, and the p22(phox) level was unaffected by TGF-beta1. On the other hand, Nox4 expression was dependent on the presence of p22(phox), establishing an asymmetrical relationship between the two proteins. Nox4 and p22(phox) proteins localized to the endoplasmic reticulum and their distribution was unaffected by TGF-beta1. We used a chemically induced protein dimerization method to study the orientation of p22(phox) and Nox4 in the endoplasmic reticulum membrane. This technique is based on the rapamycin-mediated heterodimerization of the mammalian FRB domain with the FK506 binding protein. The results of these experiments suggest that the enzyme complex produces H2O2 into the lumen of the endoplasmic reticulum, indicating that Nox4 contributes to the development of the oxidative milieu within this organelle
Phenotypic spectrum and transcriptomic profile associated with germline variants in TRAF7
PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies
Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths
Publisher Copyright: © 2021 The Authors, some rights reserved.Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/ml; in plasma diluted 1:10) of IFN-alpha and/or IFN-omega are found in about 10% of patients with critical COVID-19 (coronavirus disease 2019) pneumonia but not in individuals with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-alpha and/or IFN-omega (100 pg/ml; in 1:10 dilutions of plasma) in 13.6% of 3595 patients with critical COVID-19, including 21% of 374 patients >80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1124 deceased patients (aged 20 days to 99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-beta. We also show, in a sample of 34,159 uninfected individuals from the general population, that auto-Abs neutralizing high concentrations of IFN-alpha and/or IFN-omega are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of individuals carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals 80 years. By contrast, auto-Abs neutralizing IFN-beta do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over 80s and total fatal COVID-19 cases.Peer reviewe
The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies
SignificanceThere is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population
The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-Ï, and/or IFN-ÎČ are found in âŒ20% of deceased patients across age groups, and in âŒ1% of individuals aged 4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-Ï, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and â„70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those â„80 y old for autoantibodies neutralizing IFN-α2 or IFN-Ï, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-Ï. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute; The Rockefeller University; the St. Giles Foundation; the NIH (Grants R01AI088364 and R01AI163029); the National Center for Advancing Translational Sciences; NIH Clinical and Translational Science Awards program (Grant UL1 TR001866); a Fast Grant from Emergent Ventures; Mercatus Center at George Mason University; the Yale Center for Mendelian Genomics and the Genome Sequencing Program Coordinating Center funded by the National Human Genome Research Institute (Grants UM1HG006504 and U24HG008956); the Yale High Performance Computing Center (Grant S10OD018521); the Fisher Center for Alzheimerâs Research Foundation; the Meyer Foundation; the JPB Foundation; the French National Research Agency (ANR) under the âInvestments for the Futureâ program (Grant ANR-10-IAHU-01); the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (Grant ANR-10-LABX-62-IBEID); the French Foundation for Medical Research (FRM) (Grant EQU201903007798); the French Agency for Research on AIDS and Viral hepatitis (ANRS) Nord-Sud (Grant ANRS-COV05); the ANR GENVIR (Grant ANR-20-CE93-003), AABIFNCOV (Grant ANR-20-CO11-0001), CNSVIRGEN (Grant ANR-19-CE15-0009-01), and GenMIS-C (Grant ANR-21-COVR-0039) projects; the Square Foundation; GrandirâFonds de solidaritĂ© pour lâEnfance; the Fondation du Souffle; the SCOR Corporate Foundation for Science; The French Ministry of Higher Education, Research, and Innovation (Grant MESRI-COVID-19); Institut National de la SantĂ© et de la Recherche MĂ©dicale (INSERM), REACTing-INSERM; and the University Paris CitĂ©. P. Bastard was supported by the FRM (Award EA20170638020). P. Bastard., J.R., and T.L.V. were supported by the MD-PhD program of the Imagine Institute (with the support of Fondation Bettencourt Schueller). Work at the Neurometabolic Disease lab received funding from Centre for Biomedical Research on Rare Diseases (CIBERER) (Grant ACCI20-767) and the European Union's Horizon 2020 research and innovation program under grant agreement 824110 (EASI Genomics). Work in the Laboratory of Virology and Infectious Disease was supported by the NIH (Grants P01AI138398-S1, 2U19AI111825, and R01AI091707-10S1), a George Mason University Fast Grant, and the G. Harold and Leila Y. Mathers Charitable Foundation. The Infanta Leonor University Hospital supported the research of the Department of Internal Medicine and Allergology. The French COVID Cohort study group was sponsored by INSERM and supported by the REACTing consortium and by a grant from the French Ministry of Health (Grant PHRC 20-0424). The Cov-Contact Cohort was supported by the REACTing consortium, the French Ministry of Health, and the European Commission (Grant RECOVER WP 6). This work was also partly supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases and the National Institute of Dental and Craniofacial Research, NIH (Grants ZIA AI001270 to L.D.N. and 1ZIAAI001265 to H.C.S.). This program is supported by the Agence Nationale de la Recherche (Grant ANR-10-LABX-69-01). K.K.âs group was supported by the Estonian Research Council, through Grants PRG117 and PRG377. R.H. was supported by an Al Jalila Foundation Seed Grant (Grant AJF202019), Dubai, United Arab Emirates, and a COVID-19 research grant (Grant CoV19-0307) from the University of Sharjah, United Arab Emirates. S.G.T. is supported by Investigator and Program Grants awarded by the National Health and Medical Research Council of Australia and a University of New South Wales COVID Rapid Response Initiative Grant. L.I. reports funding from Regione Lombardia, Italy (project âRisposta immune in pazienti con COVID-19 e co-morbiditĂ â). This research was partially supported by the Instituto de Salud Carlos III (Grant COV20/0968). J.R.H. reports funding from Biomedical Advanced Research and Development Authority (Grant HHSO10201600031C). S.O. reports funding from Research Program on Emerging and Re-emerging Infectious Diseases from Japan Agency for Medical Research and Development (Grant JP20fk0108531). G.G. was supported by the ANR Flash COVID-19 program and SARS-CoV-2 Program of the Faculty of Medicine from Sorbonne University iCOVID programs. The 3C Study was conducted under a partnership agreement between INSERM, Victor Segalen Bordeaux 2 University, and Sanofi-Aventis. The Fondation pour la Recherche MĂ©dicale funded the preparation and initiation of the study. The 3C Study was also supported by the Caisse Nationale dâAssurance Maladie des Travailleurs SalariĂ©s, Direction gĂ©nĂ©rale de la SantĂ©, Mutuelle GĂ©nĂ©rale de lâEducation Nationale, Institut de la LongĂ©vitĂ©, Conseils RĂ©gionaux of Aquitaine and Bourgogne, Fondation de France, and Ministry of ResearchâINSERM Program âCohortes et collections de donnĂ©es biologiques.â S. Debette was supported by the University of Bordeaux Initiative of Excellence. P.K.G. reports funding from the National Cancer Institute, NIH, under Contract 75N91019D00024, Task Order 75N91021F00001. J.W. is supported by a Research Foundation - Flanders (FWO) Fundamental Clinical Mandate (Grant 1833317N). Sample processing at IrsiCaixa was possible thanks to the crowdfunding initiative YoMeCorono. Work at Vall dâHebron was also partly supported by research funding from Instituto de Salud Carlos III Grant PI17/00660 cofinanced by the European Regional Development Fund (ERDF/FEDER). C.R.-G. and colleagues from the Canarian Health System Sequencing Hub were supported by the Instituto de Salud Carlos III (Grants COV20_01333 and COV20_01334), the Spanish Ministry for Science and Innovation (RTC-2017-6471-1; AEI/FEDER, European Union), FundaciĂłn DISA (Grants OA18/017 and OA20/024), and Cabildo Insular de Tenerife (Grants CGIEU0000219140 and âApuestas cientĂficas del ITER para colaborar en la lucha contra la COVID-19â). T.H.M. was supported by grants from the Novo Nordisk Foundation (Grants NNF20OC0064890 and NNF21OC0067157). C.M.B. is supported by a Michael Smith Foundation for Health Research Health Professional-Investigator Award. P.Q.H. and L. Hammarström were funded by the European Unionâs Horizon 2020 research and innovation program (Antibody Therapy Against Coronavirus consortium, Grant 101003650). Work at Y.-L.L.âs laboratory in the University of Hong Kong (HKU) was supported by the Society for the Relief of Disabled Children. MBBS/PhD study of D.L. in HKU was supported by the Croucher Foundation. J.L.F. was supported in part by the Evaluation-Orientation de la CoopĂ©ration Scientifique (ECOS) Nord - CoopĂ©ration Scientifique France-Colombie (ECOS-Nord/Columbian Administrative department of Science, Technology and Innovation [COLCIENCIAS]/Colombian Ministry of National Education [MEN]/Colombian Institute of Educational Credit and Technical Studies Abroad [ICETEX, Grant 806-2018] and Colciencias Contract 713-2016 [Code 111574455633]). A. Klocperk was, in part, supported by Grants NU20-05-00282 and NV18-05-00162 issued by the Czech Health Research Council and Ministry of Health, Czech Republic. L.P. was funded by Program Project COVID-19 OSR-UniSR and Ministero della Salute (Grant COVID-2020-12371617). I.M. is a Senior Clinical Investigator at the Research FoundationâFlanders and is supported by the CSL Behring Chair of Primary Immunodeficiencies (PID); by the Katholieke Universiteit Leuven C1 Grant C16/18/007; by a Flanders Institute for Biotechnology-Grand Challenges - PID grant; by the FWO Grants G0C8517N, G0B5120N, and G0E8420N; and by the Jeffrey Modell Foundation. I.M. has received funding under the European Unionâs Horizon 2020 research and innovation program (Grant Agreement 948959). E.A. received funding from the Hellenic Foundation for Research and Innovation (Grant INTERFLU 1574). M. Vidigal received funding from the SĂŁo Paulo Research Foundation (Grant 2020/09702-1) and JBS SA (Grant 69004). The NH-COVAIR study group consortium was supported by a grant from the Meath Foundation.Peer reviewe
L'Ă©cole, la musique savante et les adolescents des classes populaires. Les dilemmes de l'action culturelle Ă l'Ă©cole
International audienc
Prises en charge intra-et inter-institutionnelles. Pour une sociologie du «partenariat»
International audienc
- âŠ