154 research outputs found

    Silvopastoral systems as a tool for territorial sustainability and biodiversity

    Get PDF
    Rural and livestock population evolution in the inner north of Portugal has demonstrated a great regression with consequences for environment and nature conservation. In this context, and taking into account that pastoral activity has shaped the natural areas of mountain territories since its beginning and that territories are currently part of Natura 2000 network, rethinking the importance of such activity has become vital. The constraints affecting daily tasks performed by shepherds and livestock breeders as well as the installed social segregation are a strong limitation. However, current research developed in the context of nature conservation has demonstrated the importance of the landscape mosaic promoted by grazing in the preservation of priority habitats. In this way, it is urgent to assess the issue of shepherds and livestock breeders’ image in terms of their roles, relationships and concerns, as well as to assess pastoralism socioeconomics in regard to self-consumption, market and rural self-sufficiency. In this perspective, this work presents an analysis of the adaptation of grazing to current times, perceiving its limitations and success potential.This work is supported by European Structural and Investment Funds, FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project No. 006971 (UID/SOC/04011)], and national funds, through FCT, Portuguese Foundation for Science and Technology under project UID/SOC/04011/2013.info:eu-repo/semantics/publishedVersio

    A Minimal Model of Metabolism Based Chemotaxis

    Get PDF
    Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis

    In situ detection of boron by ChemCam on Mars

    Get PDF
    We report the first in situ detection of boron on Mars. Boron has been detected in Gale crater at levels Curiosity rover ChemCam instrument in calcium-sulfate-filled fractures, which formed in a late-stage groundwater circulating mainly in phyllosilicate-rich bedrock interpreted as lacustrine in origin. We consider two main groundwater-driven hypotheses to explain the presence of boron in the veins: leaching of borates out of bedrock or the redistribution of borate by dissolution of borate-bearing evaporite deposits. Our results suggest that an evaporation mechanism is most likely, implying that Gale groundwaters were mildly alkaline. On Earth, boron may be a necessary component for the origin of life; on Mars, its presence suggests that subsurface groundwater conditions could have supported prebiotic chemical reactions if organics were also present and provides additional support for the past habitability of Gale crater

    Emergence of light-driven protometabolism on recruitment of a photocatalytic cofactor by a self-replicator

    Get PDF
    Establishing how life can emerge from inanimate matter is among the grand challenges of contemporary science. Chemical systems that capture life’s essential characteristics—replication, metabolism and compartmentalization—offer a route to understanding this momentous process. The synthesis of life, whether based on canonical biomolecules or fully synthetic molecules, requires the functional integration of these three characteristics. Here we show how a system of fully synthetic self-replicating molecules, on recruiting a cofactor, acquires the ability to transform thiols in its environment into disulfide precursors from which the molecules can replicate. The binding of replicator and cofactor enhances the activity of the latter in oxidizing thiols into disulfides through photoredox catalysis and thereby accelerates replication by increasing the availability of the disulfide precursors. This positive feedback marks the emergence of light-driven protometabolism in a system that bears no resemblance to canonical biochemistry and constitutes a major step towards the highly challenging aim of creating a new and completely synthetic form of life. [Figure not available: see fulltext.]

    Defining and simulating open-ended novelty: requirements, guidelines, and challenges

    Get PDF
    The open-endedness of a system is often defined as a continual production of novelty. Here we pin down this concept more fully by defining several types of novelty that a system may exhibit, classified as variation, innovation, and emergence. We then provide a meta-model for including levels of structure in a system’s model. From there, we define an architecture suitable for building simulations of open-ended novelty-generating systems and discuss how previously proposed systems fit into this framework. We discuss the design principles applicable to those systems and close with some challenges for the community

    A New Replicator: A theoretical framework for analysing replication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Replicators are the crucial entities in evolution. The notion of a replicator, however, is far less exact than the weight of its importance. Without identifying and classifying multiplying entities exactly, their dynamics cannot be determined appropriately. Therefore, it is importance to decide the nature and characteristics of any multiplying entity, in a detailed and formal way.</p> <p>Results</p> <p>Replication is basically an autocatalytic process which enables us to rest on the notions of formal chemistry. This statement has major implications. Simple autocatalytic cycle intermediates are considered as non-informational replicators. A consequence of which is that any autocatalytically multiplying entity is a replicator, be it simple or overly complex (even nests). A stricter definition refers to entities which can inherit acquired changes (informational replicators). Simple autocatalytic molecules (and nests) are excluded from this group. However, in turn, any entity possessing copiable information is to be named a replicator, even multicellular organisms. In order to deal with the situation, an abstract, formal framework is presented, which allows the proper identification of various types of replicators. This sheds light on the old problem of the units and levels of selection and evolution. A hierarchical classification for the partition of the replicator-continuum is provided where specific replicators are nested within more general ones. The classification should be able to be successfully applied to known replicators and also to future candidates.</p> <p>Conclusion</p> <p>This paper redefines the concept of the replicator from a bottom-up theoretical approach. The formal definition and the abstract models presented can distinguish between among all possible replicator types, based on their quantity of variable and heritable information. This allows for the exact identification of various replicator types and their underlying dynamics. The most important claim is that replication, in general, is basically autocatalysis, with a specific defined environment and selective force. A replicator is not valid unless its working environment, and the selective force to which it is subject, is specified.</p

    Engineers of Life? A Critical Examination of the Concept of Life in the Debate on Synthetic Biology

    Get PDF
    The concept of life plays a crucial role in the debate on synthetic biology. The first part of this chapter outlines the controversial debate on the status of the concept of life in current science and philosophy. Against this background, synthetic biology and the discourse on its scientific and societal consequences is revealed as an exception. Here, the concept of life is not only used as buzzword but also discussed theoretically and links the ethical aspects with the epistemological prerequisites and the ontological consequences of synthetic biology. The second part examines this point of intersection and analyses some of the issues which are discussed in terms of the concept of life. The third part turns to the history of the concept of life. It offers an examination of scientific and philosophical discourses on life at the turn of the 20th century and suggests a surprising result: In the light of this history, synthetic biology leads to well-known debates, arguments, notions and questions. But it is concluded that the concept of life is too ambiguous and controversial to be useful for capturing the actual practice of synthetic biology. In the fourth part I argue that with regard to the ethical evaluation of synthetic biology, the ambiguity of the concept of life is not as problematic as sometimes held because other challenges are more important. The question whether the activity of synthetic biological systems should be conceived as life or not is primarily theoretical

    Varieties of living things: Life at the intersection of lineage and metabolism

    Get PDF
    publication-status: Publishedtypes: Articl
    • …
    corecore