
Defining and Simulating Open-Ended Novelty:

Requirements, Guidelines, and Challenges

Wolfgang Banzhaf1, Bert Baumgaertner2, Guillaume Beslon3,
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Abstract

The open-endedness of a system is often defined as a continual pro-
duction of novelty. Here we pin down this concept more fully by defining
several types of novelty that a system may exhibit, classified as variation,
innovation, and emergence. We then provide a meta-model for including
levels of structure in a system’s model. From there, we define an archi-
tecture suitable for building simulations of open-ended novelty-generating
systems and discuss how previously proposed systems fit into this frame-
work. We discuss the design principles applicable to those systems and
close with some challenges for the community.
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1 Introduction

1.1 Background

Open-endedness, roughly defined as “the ability to continuously produce novelty
and/or complexity”,1 is considered a ubiquitous feature of biological, techno-
social, cultural systems, and many other complex systems that develop in a
self-organized manner. There is ample literature arguing that both natural
and artificial systems share this feature in various domains and that examples
of open-ended systems are provided by biological evolution, human languages,
legal systems, economic and financial systems, music and art, science and math-
ematics, to name only a few.

In the field of artificial life (ALife), open-ended evolution and general open-
endedness are crucial concepts, whose quest and fulfillment constitute one of its
“millennium prize problems” [18]. What is surprising, however, is that open-
endedness has not found a sufficiently clear-cut and stringent definition but
remains ill-defined, despite more than 20 years of efforts to study its realization.

1.2 Motivation

Open-ended evolution seems to be one of the fundamental characteristics of
life, perhaps even a defining characteristic, motivating the search for a deeper
understanding of the phenomenon. But in recent years the problem has taken
on an added urgency, because the open-endedness of human socioeconomic-
technological systems has begun to have profound consequences on earth’s eco-
sphere as a whole: we are now living in the Anthropocene.

We contend that open-endedness is essentially a generic property, one that
can be best understood if studied not just in one domain, biology, but in all the
types of systems in which it operates, including artificial ones. Such a generic
formal framework would also be an important step toward a unified scientific
treatment of natural-human systems.

Informally, open-endedness refers to the ability of a system to continue pro-
ducing “interesting” novelty without exhaustion. In this paper we aim to ad-
vance the study of open-endedness from both a scientific and an engineering
perspective. Classically, the former tries to understand and analyze phenom-
ena, while the latter tries to implement, modify, and manage them. However,
in the context of computational sciences and particularly ALife, one may be
interested in implementing the phenomenon in order to understand it. That is
why we here specifically discuss the conditions for a suitable implementation of
open-endedness.

There are several and diverse reasons to study open-endedness. These in-
clude the following:

• We want to understand life as it is: How do the microscopic laws of
physics generate organisms? With life being a historical system forged by
evolution, understanding the open-endedness property of this evolutionary
process is likely to shed light on life itself.

• We want to understand the emergence of complex organisms, including
us: What enables a seed and a set of scattered and disparate elements

1A review of the definitions found in the literature is provided in §2

2



to develop into a complex multicellular organism? Is development open-
ended?

• We want to explain evolution in vivo: What are the reasons for the ac-
tual path of evolution observed on Earth? In particular, do the “Major
Evolutionary Transitions” [74] that occurred in the actual evolutionary
history follow some specific rules that would be those of open-endedness
(if any)? Or is it contradictory even to speak of “rules” of open-endedness,
as “rules” tacitly exclude or constrain some otherwise “open” possibilities?

• We want to follow the emergence of intelligence as a continuum: How do
biological organisms generate and internalize useful models of the world
in which they are embedded?

• We want to understand the change and growth of human socioeconomic
systems, including the emergence of autonomous entities such as corpora-
tions and governments.

• We want to elucidate fundamental and methodological aspects of ALife:
Can we engineer or manage “major” transitions [74] in technical, social,
or biological systems by building models able to represent them — but
without hard-coding these transitions explicitly?

• We want to realize the property of open-endedness in algorithms: Can
the “universality” of physical computers support the generation of arti-
ficial open-endedness? Do results from the theory of computation and
complexity in computer science apply to open-endedness?

• We want to understand the essential role of time: What are the char-
acteristics of the fundamental difference between the computation of an
algorithm and the mathematical “calculation” of a feature of the world,
for example, a novelty or a transition?

• We want to feed back into bio-inspired engineering the concepts of biolog-
ical complexity: Is it possible to design and implement creative machines?

Hence, there is a need for a sufficiently precise definition of open-endedness to
ensure that those interested in this topic can agree on what they observe, or the
nature of the problem(s) they are actually trying to solve. Further, requirements
need to be established for open-endedness to ultimately become a measurable
and quantifiable feature of a system. Artificially designed systems will help in
this process of refinement as they allow for well-prepared complex systems to
be observed and manipulated in arbitrary ways.

1.3 Inception

This paper is the outcome of a workshop on “Open-ended Novelty” held in the
summer of 2014 at the Department of Computer Science, Memorial University of
Newfoundland, Canada. The authors come from diverse backgrounds and have
different interests, yet share a common vision: we believe that open-endedness
and the continual creation of novelty are key characteristics of our universe,
which can be observed at different levels of multiple systems. We think this
merits a close study as it might provide valuable insights into how complex
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systems work and can be applied. We are convinced that a better understanding
of the questions relating to the open-ended production of novelty is one of the
central intellectual challenges of our time.

1.4 Outline

The structure of our argument is as follows. Before presenting our own defini-
tion, we need to install the concept of open-endedness on better foundations,
hence start with a review of the literature on the topic (§2). Then, as our
elements of definition are necessarily relative to some model, we introduce a
methodological discussion of models and meta-models, and describe the main
features of our own model: entities, systems, levels, information, and timescales
(§3). This establishes a framework in which open-endedness can be defined
using three classes of novelty (§4).

This definition also exposes certain limits to open-endedness from various
perspectives, including issues of computational simulation (§5). Given these
limits, we augment our model of open-ended systems with two engineering com-
ponents in order to provide an architecture for effective simulations of open-
endedness (§6). We discuss a number of examples from the literature in terms
of our framework and associated architecture (§7).

Finally, we pose a number of (grand) challenges to the community (§8).

2 Definitions of Open-Endedness

“Open-ended” may refer to different properties of a system’s process. At least
two major categories of open-endedness, based on two meanings of “end”, can
be distinguished: (1) processes that do not stop, and (2) processes that do not
have a specific objective. Biological evolution clearly fulfills both criteria, but
they need not always be correlated. Absence of time limit within a small set of
possible outcomes (or a single outcome) is the hallmark of attractor dynamics,
by which a system settles into one stable or stationary pattern, such as a limit
cycle or a chaotic trajectory: while it is still running on the short timescale,
it has nevertheless reached an end state. Conversely, absence of goal within a
bounded duration would be the case of a stochastic system such as a roll of the
dice or a bagatelle (a board game in which a ball bounces on pins): these are
short-lived but can basically “land anywhere”.

Combining these two categories of open-endedness (as in biological evolu-
tion) creates a third category, which is likely to be the most appropriate one
from our point of view: (3) processes that do not stop and have no specific
objective. This position emphasizes the transient part of dynamical systems,
which in many cases can be extremely protracted to the point of never reaching
convergence. Much of what goes on in living systems could be characterized as
an “attempt” to remain in that transient part.

2.1 A Look at the Literature

There is substantial scientific literature using the expressions “open-endedness”
(OE) or “open-ended evolution” (i.e. OE in the context of biological evolution)
from which some general features are visible.
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Despite the fact that the concept strongly involves reference to biological
systems and evolution in the biosphere [17], literature on OE mainly originates
from the fields of ALife and evolutionary computation. This contrasts with the
idea conveyed by many papers that life is obviously open-ended [16, 20, 58, 71,
79, 101–103, 112]. Moreover, except for a few seminal contributions [10, 15, 48,
89], most of this literature is from the last 20 years. However, many classical
questions in evolutionary biology can be considered close to the question of
OE. Notable examples from the biological literature are [73, 92, 118], which are
discussions of OE in all but name.

Although OE is a central concept in many scientific articles and communica-
tions, very few authors risk a definition that goes beyond the couple of sentences
of general papers in which OE is also not defined precisely, for example, [18].
Some have even referred to “truly open-ended evolution” without clarifying what
it means.

When we take a closer look at the various definitions of OE proposed in the
literature, four different categories emerge: OE can be defined as: (i) “perpetual
production of novelty”; (ii) “unbounded evolution”; (iii) “continual production
of complexity”; or (iv) “the essence of life”.2 We discuss these categories one
by one:

(i) OE as perpetual production of novelty
This is the most classical definition of OE [9, 23, 69, 86, 98, 112]. It mainly
follows Taylor’s work [115], although some earlier references can also be
found [60]. Taylor defines an open-ended evolutionary system as “a system
in which components continue to evolve new forms continuously, rather
than grinding to a halt when some sort of ‘optimal’ or stable position
is reached”. Interestingly, he adds that “open-ended evolution does not
necessarily imply any sort of evolutionary progress”, which clearly distin-
guishes this definition from the ones based on evolution of complexity (see
third item below).

(ii) OE as unbounded evolution
This definition of OE is due to the seminal work of Bedau [15, 19, 20],
illustrated in an ecological model of L-system plants [38] where evolution
is deemed “without a definite maximum fitness, hence no optimal goal
or solution to reach”, or in abstract heterogenous cellular automata [77],
where it is qualified as “long-term”. It is close to (i), but complemented
by statistical measures to characterize long-term evolutionary dynamics
and distinguishes between three classes of evolutionary systems, including
a test for OE. These measures have been refined by Channon [27], and
a fourth class has been added by Skusa and Bedau [103]. A few models
have successfully passed the given test [26, 71]. However, their long-term
dynamics are far from the level of diversity and complexity observed in
natural systems, thus raising questions about the test itself and about the
equivalence of unboundedness and open-endedness of evolution [71].

(iii) OE as continual production of complexity
In the previous definitions of OE, there is no explicit qualitative char-

2Note, however, that the last definition may not be exclusive. In particular, one can define
open-ended evolution as an unbounded evolutionary process and simultaneously consider that
open-ended evolution is a definition of life.
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acterization of the kind of novelty produced by evolution. In this third
definition, only novelties that increase the complexity of the evolving en-
tities are considered. This definition of OE as a continual production of
complexity is popular [21, 39, 50, 59, 70, 96, 100]. However, this definition,
which implicitly requires the existence of an “arrow of complexity” in bio-
logical evolution, is rejected by some authors, who state that open-ended
evolution does not imply an increase of complexity but, simply, creates
the possibility for it [72, 97, 115]. Other authors suggest that the issues
of OE (considered as continual production of novelty) and of complexity
increase are linked because simple agents in artificial life have less possi-
bility of producing novelty [105, 108], though this is clearly not the case
in biological systems, given the history of bacteria.

(iv) OE as the essence of life
Although not widely accepted in the literature, the idea that open-ended
evolution could be considered as a definition of life is proposed in many
papers. Ray writes that he “would consider a system to be living if it is
self-replicating, and capable of open-ended evolution” [89], an idea that
was further discussed by Bedau [16]. For Ruiz-Mirazo et al. [97], a living
system is considered to be an autonomous system with the property of
OE brought about by a process of evolution.

All four definitions are similar to each other. In many contributions, the dif-
ference between ‘novelty’ and ‘complexity’ is not clear at all. Moreover, they
all originate from considerations on biological evolution per se, whereas the
phenomenon of OE is widespread in the universe, as we stated earlier. Most
importantly, these definitions generally suffer from a major drawback: they
are based on terms whose definition is itself challenging (‘novelty’, ‘complex-
ity’, ‘unbounded’, ‘life’), as attested by qualifications added to the meaning
of these terms. For example, Bianco uses the expression ‘major novelty’ [23],
while Rasmussen et al. speak of ‘adaptive novelty’ [86]. Similarly, Taylor sug-
gests that continuous production of novelty means that “an indefinite variety of
phenotypes are attainable through the evolutionary process, rather than con-
tinuous change being achieved by, e.g. cycling through a finite set of possible
forms” [115]. Thus, not all forms of novelty would lead to OE.

We therefore arrive at two contrasting definitions. On the one hand, there
is the idea of continual (unbounded) creation of novelty, which appears to be
necessary but not sufficient. On the other hand, there is the notion of continual
(unbounded) creation of complexity, which appears to be sufficient, but not
necessary for OE.

One of the motivations of this paper is to offer a new definition that avoids
these pitfalls. To this end, we propose to keep the first idea above, that of
“continual generation of novelty”, but reposition it in the well-defined context
of models and modeling. We argue that the concept of a model is fundamental
to the definition and analysis of OE and open-ended systems, because the very
notion of novelty cannot be understood without the requirement for a model of
the observed (and changing) system. The modeling aspect is sufficiently general
to capture non-biological systems as well, and allows us to see them from the
perspective of OE.

In the next section, we discuss this point further by introducing the notion
of models and “meta-models”. Then, we give a few basic definitions of the
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elements that constitute the model that we later used to define OE.

3 A Meta-Model for Open-Endedness

“All models are wrong, but some are useful”
—George E. P. Box, 1987

3.1 Models and Meta-Models

3.1.1 Scientific models

Scientific models are descriptive models of part of the existing world.
Physical reality comprises material and energy with structure and dynamics,

exhibiting patterns in structure and behavior. We perceive some of these pat-
terns (and even non-existent pseudo-patterns), and build models of the world.
The models are abstractions; we overfit and underfit, abstract and omit, err, con-
fabulate and imagine. Our models range from implicit mental pattern recogni-
tion and expectations, through prose, informal cartoons, sketches and diagrams,
to fully formal computational and mathematical models. But they are all mod-
els, and reality can be different (richer, poorer, other). In particular, our models
tend to be “crisper” than reality, identifying classes and categories where there
are actually spectra, and having difficulty with “borderline” structures that
fall between or on the boundaries of our categories (for example, viruses are
problematic if we are using a model that insists life is a binary property).

In scientific models, if reality and our model disagree unacceptably for our
purposes, it is the model that is wrong. The model needs to be corrected.

We can use our models to classify, understand, explain, and predict. Things
can happen in the world that are outside the model. For example, a model of
traffic flow might not include the current phase of the moon – unless it explicitly
considers the effect of moon luminosity on traffic. At other times, things can
happen that are in the scope of the model, but the model does not capture them
sufficiently well (for example, borderline entities). And things can happen that
start in the model, but move outside the model (for example, the evolution of a
new species of entity), requiring a modification of the model to capture the new
features. Hence, our scientific understanding of the system is model-dependent
(for example, if we were already using a model of the system as it exists after a
speciation, then the speciation event would not move outside the model).

There are many model-types used to categorize the roles that models play in
scientific practice, for example, phenomenological models, computational mod-
els, scale models, analogue models. For a philosophical overview of categorizing
models in science, see [41, 113]. The rise of computer simulations has signif-
icantly shaped our understanding of models and their relation to theory and
experiments. These issues are addressed in [57, 123] and [119, ch.4]. For a dis-
cussion of developing false models as a means to making scientific progress, see
[121].

3.1.2 Engineering models

Engineering models are prescriptive or normative models of a system to be built
in the world, for example, a bridge.
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Engineering	  model	  
specifying	  explicit	  code	  

behaviours	  

Scien9fic	  model	  of	  
(emergent)	  code	  

behaviours	  

Executing code 

Implement Observe 

Run 

Executable 
code 

Figure 1: Two kinds of computational model. An engineering model is used to specify
the software to be implemented. A scientific model is derived from observations of the
execution of the software. These models can have different structures, even about the
same software.

When building a system, we construct a model of what the system is meant
to do. An engineering model describes what we are trying to bring into existence,
in contrast to a post hoc scientific model of existing reality. It is still a model,
however, in that it may not capture exactly what the system does. (We are
here assuming for simplicity that the underlying scientific model of the relevant
domain is well understood and correctly applied. More complete accounts are
available, for example [55].)

In engineering, if reality (the engineered system) and the model of the system
disagree, it is reality that is wrong, for example, if the bridge collapses. Reality
needs to be “debugged” to conform more closely to the model.

3.1.3 Computational models

Software is a special case of an engineered system, with the model being the
specification and design of the software, and the engineered system being the
executing code. For example, in an object-oriented system, the model could be
a collection of UML diagrams. The software is the executing code that conforms
to this model (coded classes corresponding to boxes in the class diagram, with
behaviors following the sequence diagrams). If no engineering model pre-exists,
if the model is implicit and only the code is written, then a post hoc scientific-
style model can be inferred. Such a model will be much messier than a designed
engineering model.

Computational science and ALife can involve many different intertwined
models, both engineering and scientific. In computational science, software
can be used as an executable model of a real object (biological, sociological,
technological, etc.). The model of interest is the scientific model built from
observing the execution of the code (analogous to the scientific models built
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from observing real world behaviours). Additionally, the software will generally
have been designed using engineering models (for example, UML diagrams). See
figure 1.

So computational models can have different content depending on the spe-
cific objectives: scientific or engineering. For example, if the objective is to
engineer an open-ended software system, the property of OE will be part of
the engineering model of the code. Alternatively, if the objective is to model
the observed behaviour of the simulation of a real world open-ended system (in
the context of computational science), then OE may be present in the scientific
model, derived from observing emergent behaviour in the execution of the code,
but it need not be present in the prior engineering model of the code. Indeed, it
should not be present in the engineering model, if the objective is to determine
if certain low level behaviours can exhibit certain emergent properties.

3.1.4 Meta-models

As discussed above, the purpose of a model is to provide an abstract language
for the relevant domain concepts. In the case of a computational model, it
defines the concepts to be implemented in code. The purpose of a meta-model
is to provide the analogous language to define such models, to provide the
concepts that can be used to build the model. For example, in an object-oriented
system, the meta-model would contain the concepts of ‘class’, ‘object’, ‘method’,
‘association’, and so on. Similarly, a diagram describing the Krebs cycle of an
organism is a model whose meta-model contains the concepts of ‘reactions’,
‘metabolites’, or ‘enzymes’. See [56] for an example of a meta-model capturing
concepts of ‘energy’, ‘environment’, and ‘organism’, and its instantiation in an
agent-based model. Roughly speaking, the meta-model is the key to the model
in the way the key to a map lists all the graphical concepts used to draw the
map. In many modeling contexts the relevant meta-models may be implicit.

A variety of models may conform to the same meta-model. For example, the
meta-model used by the model of the Krebs cycle can be used by models of other
metabolic pathways. On the other hand, the same system can be captured by a
variety of models conforming to different meta-models. For example, a metabolic
pathway can be modelled by a set of Ordinary Differential Equations (ODEs),
with a meta-model including concepts such as ‘concentration’ and ‘enzymatic
rate’ [5]. Metabolic pathways can also be modelled using agent-based formalisms
[2], with a meta-model including concepts such as ‘agent’ and ‘rule’. The choice
of a meta-model directly determines the limits of the models that could conform
to it. In the example, the meta-model allowing ODE descriptions and resulting
ODE models cannot account for spatial behaviour of the metabolic pathway
or for its stochastic behaviour. A meta-model allowing agent-based formalisms
admits models which can naturally include both behaviours.

In essence, a meta-model is a model of a model [64, ch.8]. Since a model
may itself be a meta-model, there is no need for a separate concept of a meta-
meta-model, although there may be examples of such. For example, UML is the
meta-model of the meta-model presented in Figure 3. Similarly, one can view
this paper as an (informal) meta-model of open-endedness.
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3.2 Our Entity-Based Multi-Level Meta-Model

OE is a process by which continual novelty is produced in the course of a dynamic
process. In this paper we propose a scientific (descriptive) meta-model with
which we illustrate our definition of OE. This particular entity-based multi-level
meta-model should cover evolution in biological life, change in socioeconomic
systems, and processes in ALife. Although ALife concerns artificial systems, our
meta-model is not a prescriptive (normative) engineering model, but a model
for describing open-ended systems, natural or artificial. Other meta-models of
OE are probably possible, for example, ones supporting mathematical models
formulated in terms of ODEs or PDEs. Our hope is that such a definition
of OE in terms of models and meta-models will help the design of normative
engineering models for implementing ALife, and provide tools to describe and
understand the long-term dynamic of Open-Ended systems.

In our models we are working with systems (biological, social, artificial) of
entities organized into multiple levels. In the following subsections, we intro-
duce basic definitions with respect to some (meta-)model. In a given situation,
the chosen model must be a sufficiently good representation of reality to be
useful.

3.2.1 Domain of interest

The purpose of our meta-model is to provide a language able to model any
open-ended system. As explained below, this system can itself be composed of
(sub-)systems. We use the term “domain of interest” to describe the open-ended
system under investigation, and in order to avoid confusion between the system
to be modeled and the systems comprising the model. Note that the concept of
domain of interest is not part of our meta-model (Figure 3), but rather a limit
between what we want to study and what remains out of scrutiny. Since we do
not wish to model the entire universe, the domain of interest encompasses the
part of the world that we are modeling.

3.2.2 Entities

An entity is an identifiable integrated whole within the model: a “thing” with
structure (organization) and behavior (activity, processing). Entities can inter-
act with each other, and with their environment. We explicitly sidestep any
discussion of the non-trivial issue of identification or demarcation of entities [25].

Note that entities may themselves contain entities. This property naturally
leads to the concept of levels:

• A level-0 entity is an atomic entity, with no modeled internal structure.

• A level-N entity (where N > 0) is a system entity, having lower-level
entity components.

The concept of levels is refined further in §3.2.6.

3.2.3 Environment

An environment is a model of part of the domain of interest not modeled as
explicit entities, including space, fields, flows, and so on. What is part of an
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environment and what is an entity is a modeling decision, and depends on what
entities are chosen to be on the lowest level of our systemic hierarchy (§3.2.6).

A local environment is the part of a system that is not modeled explicitly
as entities.

An external environment is that part of the domain of interest which
is external to the system but exerts an influence on it. For example, it might
impinge on the system via inputs (flows, forces, signals) and be in turn influenced
by the system via outputs. The external environment may host other entities
external to the system.

3.2.4 System

A system is a local environment plus a population of possibly differentiated
and interacting entities, forming some identifiable whole, and separated from
an external environment.

A system may be an aggregate system, comprising a collection or popu-
lation of entities in a local environment, but not considered to form an entity
in its own right. For example, a simple population of organisms is usually an
aggregate system, and not an entity in its own right3.

Alternatively, a system may be a system entity, an entity at a higher
level than its component self-organized entities, constraining them and their
local environment via downward causation.

An atomic entity is not a system, as it has no internal (modeled) structure.
The specific entities comprising the system’s components may change over

time, for example, by recycling material. Also, specific entities may belong to
more than one system, either separated in time as entities flowing from one sys-
tem to another, or simultaneously. For example, subsystems may be composed
into a larger system by overlapping/intersecting some of their entities. A system
needs to have a boundary in some space; typical such spaces include physical
space, time, speed, or behavior.

3.2.5 Interactions

Entities interact with each other, and with their environment, potentially form-
ing and dissolving systems.

3.2.6 Levels

We have defined a system entity to be an entity at a higher level than its
component entities. Entities can be recursively classified into levels with cor-
responding interactions (Figure 2 and §3.2.2). Here level-0 entities are atomic
entities and level-N > 0 entities are system entities that contain at least two
lower-level entities, of which at least one is level-N−1.

Following this classification of entities into levels, the domain of interest
can be divided into domain levels: domain level N comprises all the exist-
ing/instantiated level-N entities.

For example, if we characterize bacteria to be level-N entities, then eukary-
otes could be modeled as level-N+1 entities, since nuclei, mitochondria, and

3Though proponents of group selection, who claim that natural selection can act on pop-
ulations and not just on individuals [120], would disagree.
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(A) 

(B) 

(C) 

Figure 2: Relationships between the levels of a system. (A) A collection of level-N
entities (solid circles) interact (thin solid arrows) in an aggregate system. (B) The
dynamics of these interactions stabilize the aggregates into level-N+1 system entities
(dashed circles) and these level-N+1 entities contain “specialized interface elements”
(red circles) that concentrate most of the interactions between both parts (red arrows).
(C) These new level-N+1 entities can be modeled independently of their level N com-
ponents and the stabilized interactions can be considered as higher-level interactions.
Level-N+1 entities may similarly aggregate and interact to form a level-N+2 entity,
and so on.

chloroplasts all originated from ancient bacterial introgressions. Depending on
modeling choices, however, these events could either be considered as a single
kind of event, leading to the emergence of one higher level N+1, or as separate
events, leading to the emergence of several higher levels [114]. Colonies of bacte-
ria that act as entities in their own right rather than mere aggregates could also
be modeled as level-N+1 entities. Multicellular organisms could be modeled as
level-N+2 entities, and multicellular organisms in symbiosis with populations
of bacteria as level-N+3 entities. Alternatively, one could also think of a model
where a human would be merely an environment for gut bacteria, not a separate
entity on its own level. In sum, the actual levels identified depend on the model
being used, which itself depends on the scientific questions being asked.

Let us clarify that we do not assume reality to be actually composed of dis-
crete levels. Rather, levels are concepts in our meta-model. A level-N+1 entity
is an abstraction of a particular collection of level-N entities that have organized
and stabilized into a system. Many theories of reality include such levels, either
implicitly or explicitly, for example Koestler’s “holonic hierarchy” [66] in which
holons are defined as self-contained wholes that are at the same time dependent
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Figure 3: Our meta-model, written in UML, defining the concepts to be used in any
model conforming to it. Boxes are classes from which objects in the model can be
instantiated. Links indicate associations between classes (associations being named
and valued), arrows indicate inheritance (“kind of”), diamonds indicate aggregation.
An Environment can be a Local Environment or External Environment. A System can be an
Aggregate System or a System Entity. An Entity can be a System Entity or an Atomic Entity. A
System has a Local Environment and two or more Entities. An Entity exists at both a system
Level and an information structure (model) Level. An Atomic Entity exists at Level 0. Many
Environments and Entities can have be involved in each Interaction.

parts.
The multilevel model we adopt here permits a level-N entity to have di-

rect interactions with entities on any other level. However, having too many
interactions across multiple levels is likely to render the model impossible to an-
alyze. We suggest that, to be useful, a model of an OE system should have the
overwhelming majority of interactions between levels occurring between nearest
neighbors only: from N to N+1 and N−1.

Putting it all together, our resulting meta-model of environments, systems,
entities, interactions, and levels, is shown in Figure 3.

ON LEVELS
Levels in Philosophy

There are at least two different approaches one could take to characteriz-
ing the notion of level. On the one hand, philosophers like Wimsatt have
provided a prototype of levels (as opposed to providing definitions) [122].
Under this treatment, levels are distinguished by a cluster of rankable fea-
tures: objects at different levels will have different sizes; objects at different
levels stand in composition relations to one another; objects at the same
level are governed by the same laws and the forces at play have similar
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magnitudes; objects at the same level are reliable detectors of one another
because they stand in regular and predictable relations with one another;
and objects at the same level are investigated with the same set of tech-
niques with respect to similar disciplinary perspectives. The advantage of
providing a prototype treatment of levels is that some examples of levels
may lack one or more of the aforementioned features.

On the other hand, philosophers like Craver have approached the issue
by providing a taxonomy of the different senses of level [32]. This approach
highlights the similarities and differences between the senses of level and can
provide clarity where there are often misleading associations between them.
For example, Craver distinguishes between four different senses of levels of
composition: mereology; aggregativity; mere material/spatial containment;
and mechanism:

1. Levels of mereology are formed by part-whole relations so that the
collection of parts are at a lower level than the object that the parts
make up. On the mereological conception of levels, complex things
are regarded as wholes, but this does not emphasize whether the
part-whole relation is constituted by material or spatial containment,
or some other feature. It also does not specify what relations hold
between the parts.

2. Levels of aggregativity, on the other hand, specify that the properties
of items at a higher level are the simple sums of the properties of the
items at the lower level. For example, the mass of a pile of sand is
the sum of the masses of the individual grains.

3. Levels of mere material/spatial containment is a permissive concep-
tion of composition. In this sense of level, an entity at a higher level
is constituted by pieces. For example, to model climate we might
divide the atmosphere into cubic-kilometer pieces. Pieces are to be
contrasted with components. If we divide the human body into cubic-
centimeter pieces, we would have a haphazard collection of things that
do not have clear contributions to the workings of the human body.

4. Dividing the human body into components, however, involves the
identification of how the part is relevant to the behavior of the whole.
This is the defining feature of levels of mechanisms. On this concep-
tion of levels, components at a lower level are organized together to
form components at a higher level, such that the behaviors of the
components are relevant to the behavior of the whole.

An important aspect of thinking about mechanistic levels is that they are
defined within a hierarchically organized mechanism; levels are not defined
by objective kinds that are independently identifiable from a mechanism.
To ask whether a given molecule and cell are at different levels makes sense
only in the context of a given mechanism, which in turn makes sense only
in a given model: the actual levels are model dependent. So, there is no
unique answer to whether two items are at the same level; they are if they
are both components in the same mechanism without being components of
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each other. However, under a different decomposition hierarchy, those items
can be at different levels (for example, if one is a component of the other).
Thus an elephant and a bacterium it carries can be at the same level if they
are components of the same mechanism, but can be at different levels if
the hierarchical mechanism in question is the elephant and the components
that make it up include bacteria.

In recent years, level identification has also become an interesting topic
of mathematical and information theoretic analysis [82].

3.2.7 Hierarchies and emergence in the natural world and in human
systems

In the natural world, we can observe phenomena that can be modeled as many
levels of systems nested within each other. The interest in level hierarchies
stems from the fact that they allow us to say something about emergence of
complexity in organizations [68]. More specifically, we consider higher levels of
a hierarchy, as exemplified by living systems in the form of cells, tissues, organs,
organisms, groups of organisms and societies, to be the result of processes of
emergence. We shall say that the emergence of a new level in a hierarchy is
a transition that produces a new system level, which happens in many cases
through the composition of groups that subsequently stabilize and form entities
on the higher level (see Figure 2). It is also possible for entities to emerge by
the loss of interactions, such as with simplification of gene expression pathways
in biological systems. But the emergence of complexity through simplification
cannot be the only pathway to emergence, since there is a bound to the number
of features that can be eliminated from a system before it becomes trivial.

Niches are conditions of the environment at a certain level that influence
the effects of selection on entities at that level. Niche construction is the process
by which entities modify their environment, hence improving (or sometimes de-
grading) chances of survival (i.e. modifying selection forces) for themselves and
other entities. Some argue that the process of niche construction is as important
to biological evolution as is selection [80]. While we do not want to engage in
that discussion, we note that the active modification of the environment is a
process that can be observed at several levels in the biological hierarchy as well
as in social systems and other artificial hierarchical systems.

If one considers the emergence of “tentative” groups of entities to be the
first (haphazard) step in the emergence of a new level, it follows that only
those groups that achieve a certain degree of coherence can become candidates
for entities at the emerging higher level. It is through downward causation4

constraining the behavior of lower-level entities that coherence becomes more
pronounced. Competition of gradually more coherent groups of entities sets in
and further channels the variations provided by the lower level, building a new
System Entity from patterns in the Aggregate Systems.

We exemplify our view by discussing a specific case, Darwinian evolution,
in the general model (Figure 4). Any model of Darwinian evolution would in-
clude a population of biological individuals (“organisms”) at a level N . These
individuals are entities having the property of reproduction (sexually or asexu-

4We circumvent the question of whether or in what sense “downward causation” exists in
reality by focusing on models where we introduce it as existing.
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Figure 4: A general model of three levels of an evolutionary system interacting within
and between levels. Level N is the evolving layer: it is composed of entities having a
(self-)replication property (“R”). Selection (“S”) is a constraint imposed by the sys-
tem at level N+1 (the “ecosystem”, which may include level-N+1 entities such as
a public health agency) upon level N . Variation (“V”) is a consequence of the laws
of level N−1 (molecules, including DNA, in Darwinian evolution) on the behavior of
level N . This general model encompasses both the scientific model of Darwinian evo-
lution, and engineering and simulation models (though these may include “shortcuts”
implemented at any of the three levels; see below).

ally). Now, reproduction is governed by molecular mechanisms at the lower level
(N−1). Since these mechanisms are error-prone, level N−1 drives the varia-
tion component of Darwinian evolution. At the upper level (N+1) the individ-
uals are organized in populations that interact in a finite world. These interac-
tions result in a differentiation of the reproductive success (due to Malthusian
mechanisms, predation, parasitism, altruism, etc.). This may result in many
selection types, such as a neutral process (if the population is too small regard-
ing the difference in reproductive success), natural selection in the Darwinian
sense, or removal selection as in artificial systems. Ultimately, the interactions
of these three levels (molecules, individuals, population) result in the realization
of a Darwinian process.

In socioeconomic (or, more generally, socio-ecological) systems as well, the
emergence of new entities may be identified with the emergence of downward
causation, or agency as it is referred to in the social sciences. Individual peo-
ple have agency, and are thus entities, but collections of people are often simply
queues or crowds. But when their behavior in a group is formally constrained so
that it is the group itself rather than the individuals composing it that exercises
agency, then the formally structured group is itself a higher order entity such as
a corporation, a government, or a regulatory agency; it is able to exercise causa-
tion on other entities at its level or below. As was pointed out in §3.2.6, there is
no clean separation between levels, but in the case of socioeconomic systems the
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separation may be not just model-dependent, but intrinsic. In Western societies
individuals are legally treated as autonomous entities. But many individuals are
also “components” of higher-level entities such as corporations or government
agencies, and in that context must act out the appropriate role, which is not
one of an autonomous individual.

The situation in human systems is even more complex because some entities
in these systems, specifically governments, have acquired or given themselves the
power to confer entityhood, (for example, when a business is incorporated), and
the consequences can be unusual. For example, if we consider the atmospheric
system in isolation, then it appears to be one in which macro-scale patterns such
as storms emerge, much like the flocks in boids [93]. Yet as previously pointed
out, these do not constitute new entities and therefore no new, higher level is
present. But if a storm satisfies the legal definition of a hurricane, then from the
point of view of a governmental entity the storm itself becomes an entity, with
a name, and its presence in the area causes the release of reconstruction funds
that would not have been available if the storm had not achieved the status
of an entity. The storm itself as a physical phenomenon may cause changes in
coastal land forms, but the storm as a legal entity can induce other changes
in the local geomorphology, such as dykes and drainage canals built with the
reconstruction funds. Thus, depending on the point of view, the storm both is
and is not an emergent higher-level entity, and these points of view are inherent
in the system itself.

3.2.8 Information

Life provides the dominant template as well as the language for thinking about
OE. A key marker of the transition from non-living to living systems is that,
unlike non-living systems, living systems are information-dependent. They are
dependent on information because they include as an essential component ex-
plicit models of themselves. Indeed, life may be defined as an entity that has a
model of itself and its relations with its environment [95]. The genome may be
considered to be analogous to the code describing the model, while the pheno-
type in a sense executes it in order to survive and reproduce.

With more complex organisms such as vertebrates, the models are not just
coded genomically, but also neurally based, and in human systems some are
coded liguistically in oral traditions and even in extrenal devices such as books,
pictures, and software. The fact that all living systems, including economic and
social systems (and the technology produced by these), incorporate models in
an essential way means that they experience an additional source of indetermi-
nacy. This indeterminacy arises from the fact that the models are necessarily
incomplete or imperfect, and their imperfections are various, depending on the
particular circumstances under which the models were generated, while behav-
ior of these systems depends to a greater or lesser extent on the various models
held by the individuals making up the system. This form of indeterminism asso-
ciated with “knowledge creation” (i.e. model creation) was the crux of Popper’s
argument for an “open universe” [84]. One manifestation of this indeterminacy
is the ability of agents to mislead or cheat other agents – or themselves.

Furthermore, because the models are created in part on the basis of percep-
tions of the surrounding environment or system, living systems have evolved to
a degree on the basis of their own perceptions of themselves. Perception must

17



therefore be considered a fundamental element in evolution and OE.5 Percep-
tions and misperceptions, and the model errors engendered by misperceptions,
may, in some biological systems, rival genome-level phenomena as a source of
the variations required for evolution; in the evolution of social systems they are
clearly of primary importance. Finally, perception always involves a point of
view. Therefore, in all living systems, “point of view” is an intrinsic part of the
phenomenon we are trying to understand—not just something we have as we
look at the problem of open-endedness and decide what approaches we want to
take in trying to understand it.

3.3 Timescales

We adopt the following notion: one way to distinguish levels is by the timescales
on which their dynamics can be observed.

A natural question to ask is what provides the conditions for a level in the
model and how we can recognize these conditions to be fulfilled in a particular
hierarchical system we want to observe. Since the systems we intend to consider
are open and dynamical, the notion of time is an indispensable element of our
discussion. Higher levels typically have slower dynamical timescales associated
with them, as when groups of organisms forming a society (higher level) develop
on a slower timescale than the organisms (lower level) themselves. The differ-
ence of dynamical timescales between levels can be many orders of magnitude,
but might also be down to few orders of magnitude only, with extreme cases at
the lower end of perhaps just one order of magnitude. When such a difference
in dynamical timescales is relevant, higher levels need to slow down their devel-
opment in order to exist or be perceived by an observer as something different
from their elements.

In cases such as these, we might say that downward causation from level-N
coordinates the level-N−1 entities. We might also say that the emergence of a
level-N+1 entity is due to regularities and coordination at level N . Hence the
level we focus on helps determine our explanation of the various levels.

ON TIMESCALES AND LEVELS

Levels and timescales, both of dynamics and evolution, may be intimately
related, but the relationship might be complicated. In abiotic systems it
may be the case that dynamics are faster at lower than at higher levels,
but this may be a relatively trivial observation in that the higher levels
are simply large-scale patterns of the lower-level entities, and the patterns
to be observed and said to exist must have a longer timescale. Thus the
large-scale weather system depends for its existence on the Brownian mo-
tions of the atmospheric molecules, whereas the process of self-organization
generating the pattern requires many times the Brownian timescale to un-
fold. But here the weather system’s timescale can only be defined in terms

5By “perception” we mean the ability of the System to sense (by whatever means) aspects
of its Environment, allowing it to act and react; it would not necessarily need to be a living
System.
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of the large-scale spatial pattern. Bénard cells provide another example.
In this case the lower-level building blocks are much more stable than the
emergent higher-level structures but the low-level dynamic is much more
rapid than the high-level dynamic.

In biological systems the relationship is more varied, and also more
important. Living systems are not just compositions of molecules; they
themselves construct most of their composite molecules. It is frequently
claimed that the timescale of biological (Darwinian) evolution is slower
than that of the individuals in the evolving population, so this is also a
case of the higher level (species) having a slower timescale than the lower
level (individuals or populations of individuals). It is also the case that the
inherent rate of the appearance of new molecules in the genome is much
greater than the rate of evolution in the individual, but in this case the
evolution is largely suppressed by the repair mechanisms available to the
phenotype in order to ensure the survival of the phenotype level, and hence
also the survival of the genotype. As a result, the rate of evolution of the
two levels is effectively the same—lower level variation uncorrelated with
high level variation simply dies out.

In human systems the situation may be even less straightforward. A
corporation may be considered to be a higher-level entity in that it has
a distinct physical existence (buildings, equipment, etc) as well as a legal
existence: incorporation gives it much the same legal status as a human
being, and allows it to act in relevant respects as a person. Yet it is com-
posed of a collection of people, who as employees become components of the
corporate entity. The timescale of their evolution in terms of their function
(for example, the products they make) may be slow relative to the lifetime
of an employee, or much faster. Financial entities show an even greater
range of evolutionary timescales, from a century or more in the case of sav-
ings banks to years or even months in the case of derivatives or closed-end
funds. In the case of derivatives the higher level evolves much faster than
the lower level of the instruments being securitized. In human systems we
may even find circular hierarchies when individuals are subject to the con-
straints of various higher-level organizations such as their employer, their
church, and the bylaws of the local government, these organizations being
in turn subject to the laws and regulations of the national government,
but the national government is subject to a president/king/dictator—an
individual belonging to the lowest level of the hierarchy. Note that humans
have had the ability to build entities – computers – faster than themselves
that now drive large parts of e.g. financial exchanges.

At this point it would seem safe to say that for biological and human
systems the relationship between levels and timescales is one that is fun-
damentally important. However, it is difficult to identify simple general-
izations. The problem is one that for the time being must be examined in
particular contexts.

4 Open-Endedness and Novelty

We use our meta-model, defining entities, systems and levels, to consider OE
more closely, starting from the definition already mentioned:
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Open-endedness is the continual generation of novelty.

Given this definition, there are different kinds of OE depending on the kinds of
novelty generated. We consider novelty in more detail here.

Once the relevant domain of interest has been modeled using the meta-model
in §3.2, and simulated, one can then use the model in order to interpret obser-
vations of its dynamics and to identify different kinds of novelty and observe
different kinds of open-endedness. It follows that the kind of novelty/OE identi-
fied is relative to some model and meta-model of the system under investigation.

In this Section we define different types of novelty, then discuss the different
classes of OE to which they can lead.

4.1 Types of Novelty

Having defined the primary concepts of consideration in the meta-model, we now
turn to dynamics. Due the their interactions, the systems and entities change
over time. These changes can be observed and described in the model of the
system as changes of the entities. Since level-N entities are composed of lower-
level entities and are components of higher-level entities, a change observed at
level N is generally not confined to a single level: it may be caused by changes
at lower levels and may itself cause changes at adjacent levels.6

When focusing on a given change in the system, three cases can be distin-
guished, depending on whether the observed change can be described within
the given model, within the given meta-model (but with a model change), or
whether it requires a change to the meta-model. These three cases lead to three
different types of novelty:

4.1.1 Type-0 novelty: variation

Variation: novelty within the model.

Variation is a change to an instance of the model, a change to the values of a
variable that conforms to the model.

Variation explores a pre-defined (modeled) state space, producing new values
of existing variables as in, for example:

• changing the value of an integer-values variable: x = 4, then x = 5

• changing a gene to a different allele

• increasing or decreasing the size of a finch beak

• changing the number of individuals in a population (including to zero:
extinction)

• swapping out one entity for another of the same type

• flipping a bit in GA with fixed length bitstrings

• changing prices of existing economic goods

In our meta-model, a variation does not change the set of entities the model
captures at level N . Thus, the combinatorics of these entities, i.e. the state-
space, is not changed either.

6It may also have no effect at all, as, for example, is the case with a neutral mutation.
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4.1.2 Type-1 novelty: innovation

Innovation: novelty that changes the model.

Innovation is a change to the model: a change that adds a new type or rela-
tionship that conforms to the meta-model, or possibly eliminates an existing
one.

Innovation changes the combinatorics and the size/structure of the state
space, thereby growing/shrinking the possibilities of variation. Examples of
changes to the model include:

• moving the value of a variable outside the range constrained in the model:
x is modeled as an integer value initially, then x := 0.5

• adding a new dimension of the same type: x, y : X, then x, y, z : X

• duplicating a gene or chromosome

• growing a parse tree in Genetic Programming

• adding a new species in an ecosystem

• adding a new product or production technology in an economic system

A question for our specific meta-model is whether an innovation systematically
corresponds to an increase of the number of entity types. Innovation may
correspond to the addition of a new species, but this event may be associated
with the extinction of other species at the same level, thus reducing the total
number of entities at this level. Examples of such a process can easily be found
in the economy when a new economic good replaces a previous set of goods (for
example, the computer replaced the typewriter and the mechanical calculator).
Note that the number of entities cannot be reduced continuously at a given
level.

The extinction of a species that provides necessary ecological services is
a fundamental change to the ecosystem, and can be modelled as a type of
innovation at the ecosystem level caused by the loss of a species. However,
there is no necessity to remove a type from a model when that type has no
instances. If the model is not so modified, the extinction is classed instead as
variation, with the value of the population size variable decreased to zero.

4.1.3 Type-2 novelty: emergence

Emergence: novelty that changes the meta-model.

Emergence is a change to the meta-model: a change that adds a new meta-type
or relationship, or possibly eliminates an existing one.

Potential examples of emergent phenomena include:

• the addition of the concept of discrete entities to a meta-model based on
continuum concepts;

• the addition of a new mechanisms for variation, such as sexual recombi-
nation;

• the addition of the concept of processes to a meta-model based on entities;
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• the addition of the concept of energy to a meta-model based on move-
ments.

One particularly important phenomenon is the emergence of a new level of
organisation. Our particular meta-model has been designed to highlight this
form of emergence, by the inclusion of the concept of discrete levels.

In our meta-model, a change observed at level N cannot be described at this
level because it changes the composition rules of the level-N entities. Thus, to
be described in our modeling language, this change needs the creation of new
entities at level N+1 or the elimination of all entities at some level. Note that
this can require a reorganization of the levels structure. This is the case, for
example, when bacteria and a multicellular eukaryote engage in an endosym-
biosis relationship: if the multicellular eukaryote is level-N , the compound is
level-N+1 and the ecosystem, formerly level-N+1, is now level-N+2. Or, if
the loss of a species at level-N causes the loss of the ecosystem at level-N+1,
then any structure at level-N+2 becomes level-N+1.

This generally happens when a population of entities (aggregate system)
becomes a new system entity at a higher level. Examples are:

• when configurations in cellular automata exhibit large-scale coherent pat-
terns (see §7.1)

• when bacterial cells evolve into eukaryotic cells with cytoplasm, nuclei and
organelles

• when single-celled organisms form organized multi-cellular structures such
as animals, plants and fungi

• when solitary individuals become colonies or societies

• when a population of cell tissue forms an organ

• when a group of individual economic agents pool their resources and form
a company

• when a number of species form an organized ecosystem

• when a number of artists form a new school

We have specifically included each new level as a separate component in our
meta-model, ensuring that each transition to a new level is a type-2 novelty.
Consequently, each new level will be added to the meta-model only once, and
emergence corresponds to the first occurrence of the type of entity. Once the
first level-N+1 entity has emerged as a type-2 novelty, similar entities appearing
later will be added to a pre-existing level. Thence, the next level-N+1 entity to
appear is only a type-1 novelty, an innovation at level N+1. Indeed, it “simply”
changes the level-N+1 structure, but no further change to the meta-model is
needed.

4.1.4 Classification versus measures

We have provided a classification of novelties, with respect to some model and
meta-model. Our classification complements various measures of novelty in
the literature, for example, those of [19, 20, 35]. Those measures tend to be
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expressed in terms of ‘components’ (be they genes, individuals, or whatever);
they track abundances of different components as new components enter the
system. It is assumed that it is possible to distinguish and compare these new
components.

Our classification allows us to determine if the components differ through
variation (if they are mutated strings, say), or through innovation (if they are
new species to the model, say), or differ through emergence (if they are new
levels of organisation, say), dependent on the model in use (in the current lit-
erature, the relevant model is usually implicit). The cited measures could then
potentially be used to quantify the respective amounts of variation, innovation,
or emergence activity, in order to determine if the activity of the respective type
is continuing (see also §4.3).

4.2 Events and classes of events

Any particular change is potentially the result of a set of changes at a range of
levels, and may result in changes at a range of levels. We group such changes
into an event: a set of cascading changes at various levels of the system that
ultimately corresponds to a single novelty at a given level. It directly follows
from this definition that events can be classified into three classes according to
the highest type of novelty they generate at the different levels where they are
observable.

The distinction between changes (observed at a given level) and events
(groups of changes at all levels) is a fundamental one. In particular it captures
the question of timescales (see §3.3) since a single change at one level may be
the consequence of many changes at the lower levels. For a given system, the
observed events will be relative to the model and meta-model. The composition
rules that are used to define levels in our meta-model have no equivalence for
the types of novelty: any type of novelty at a given level can be the cause or
consequence of any type of novelty at another level. In particular, all kinds of
novelty can ultimately be connected to a set of variations at level 0.

4.3 Open-Ended Events and Open-Ended Systems

We are now able to discern three types of events in our model: variation, inno-
vation and emergence. Two of these types, innovation and emergence, we define
as open-ended events.

Open-ended system : a system with the ability to continually produce
open-ended events

Variation (type-0) events correspond to the “normal” regime of any dy-
namical system, and thus we do not consider them open-ended. For example,
engineered mechanical systems (for example, a car) undergo events, but none of
these events change the structure of the system (i.e. number and kind of entities
composing the car).

Innovation (type-1) provides a form of OE of new kinds of things (new
types in the model), that nevertheless correspond to existing concepts (the new
types conform to the concepts in the meta-model). Emergence (type-2) provides
another form of OE, of new concepts (new components in the meta-model). We
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have designed our specific meta-model to support the idea of “major transition”
although this idea is not made explicit here. According to [74] a major transition
is the emergence of an entity composed of (sub-)entities that were capable of
autonomous replication before the transition but that are no more capable of
replication after – while the aggregate entity is now capable of replication. In
our meta-model, a major transition is a type-2 open-ended event (emergence)
that adds a new level, and therefore the ability to evolve on a higher level.
However, the loss of the replication property at the lower level is not included
in our meta-model because this property is still present in the low-level entities
that are not engaged in this specific major transition. Different changes to this
meta-model (adding other concepts than new levels) would probably lead to
other classes of emergent novelty.

Interestingly, the distinction between type-1 (innovation) and type-2 (emer-
gence) events, captures the distinction between the notion of continual novelty
and the notion of continual increase of complexity. The repeated occurrence
of type-2 events does not however imply that there is an arrow of “progress”.
A type-2 event implies that new levels must be added to the model, but these
can be the cause or consequence of a decrease of “complexity” at other levels
through partial or complete loss of structure or function. For example, the es-
tablishment of an endosymbiotic relationship between bacteria and multicellular
organisms can lead to a heavy loss of complexity of the bacteria [13, 75].

5 Limits to Open-Endedness

Proving that a system will continually produce open-ended events is challenging.
On a theoretical basis, one can question whether such systems, when instanti-
ated physically, are even possible in a finite universe. A continual production of
novelty would require physical systems that are unbounded in space, time, and
combinatorial possibilities. Conceptual models and other abstractions are not
limited in this way. This point is discussed in §5.

Should we be looking for systems able to continually produce open-ended
events, or “simply” for systems able to produce a sufficient number of open-
ended events? We thus distinguish systems that are theoretically open-ended
from those that are effectively open-ended. The former may be demonstrable
in a mathematical universe, but questionable in a finite universe; the latter are
questionable in a mathematical universe (at least for non-platonists), but may
be demonstrable in a physical one. If one says that life is open-ended, one
can only claim its open-endedness so far. Similarly, when seeking to simulate
open-endedness most authors are willing to simulate one or a small number of
open-ended events. This point is further discussed in §5.3.

5.1 Upward Limits

There are severe limits to achieving open-endedness in simulation and also in the
real world. The growth of resources required to populate the higher levels will
quickly lead to an exhaustion of material or entities. In biological systems, it
was this Malthusian limitation that led Darwin to develop the theory of Natural
Selection.
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A requirement of any such system is a lower level that comprises entities with
combinatorial power and behavior, which can generatively combine in multiple
ways to form a huge (“effectively unbounded”) diversity of entities. We call
these entities, and the rules for their combination, the “chemistry” layer. This
is level 0.7 Suppose that, at each level i, mi entities combine into a single
higher-level system, and every lower level entity belongs to exactly one higher
level system.8 A level-1 system comprises m0 level-0 entities. A level-2 sys-
tem comprises m1 level-1 entities, each comprising m0 level-0 entities, hence it
contains m1 × m0 level-0 entities. A level-k system contains Πk−1

0 mk level-0
entities. If we assume for the sake of the argument that all the mi are identical
(and that entities’ components do not overlap and are not shared), then such a
level-k system contains mk level-0 entities.

Hence the number of base entities needed to populate a system grows expo-
nentially with the number of levels. After several levels, a system like this will
exhaust the number of level-0 entities available (molecules, computer memory
cells). Moreover, for a given m0 number of atomic entities at level 0 the max-
imum number of entities at the highest level rapidly decreases as the number
of levels grows. As long as Darwinian selection is at work, this decreases the
efficiency of selection at this level and can increase the amount of “drift” [63].
A direct consequence is that the possibility for the system to acquire a more
complex structure (innovation events) also necessarily declines as the number
of levels grow. Another consequence is that innovation at each level will be less
constrained by selection at that level, and more the consequence of intrinsic
dynamics such as drift.

To summarize, the open-endedness of any discrete system with mi > 1 will
be limited by the combination of two processes: first, the exponential exhaustion
of level-0 entities used in the system’s “complexification” limits the possibility
of observing type-2 events (emergence); second, the reduction of the selection
efficiency with the decrease in number of entities at the higher level limits the
possibility of predicting the direction of type-1 events (innovation). Therefore,
one can conjecture that a finite discrete system cannot be theoretically open-
ended (in the sense that it can reach barriers to further novelty that could be
transcended only through some “external” intervention to “expand” the finite
limits).

ON COMPUTATIONAL LIMITS

Classical theoretical computer science investigates the relationships be-
tween objects that can be described or instantiated with algorithms, which
are formalizations of Hilbert’s concept of an “effective mathematical proce-
dure” [53]. Several different algorithmic models exist, the most well-known
being grammars in formal languages [85], recursive functions [30], and fi-

7With our meta-model model, it is not “turtles all the way down”!
8This does not imply or require that the set of mi entities constituting any specific level-

i+1 individual is fixed or static for the lifetime of that individual. It is a specific characteristic
of biological individuals that they continuously turn over their constituent lower level compo-
nents, while retaining their systemic coherence and individuality.
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nite automata [116]. Less well known, but relevant for our discussion, are
automata that infer functions from examples [44, 117]. The objects de-
scribed or instantiated by these models include primarily sets of finite (but
indefinitely long) strings over finite alphabets, known as formal languages,
and functions which map either strings onto strings or natural numbers
onto natural numbers.

The fundamental results of theoretical computer science prove that
there are hierarchies of sets of objects described or instantiated by abstract
models of algorithms, such that variations in the models determine which
level of the hierarchy the model describes or instantiates. In our terms, this
means that even abstract mathematical models of algorithms define classes
of innovations that are achievable by varying the models. Each of these
classes of innovations are open-ended in the sense that there is no final or
ultimate model; a model can always be extended so as to make a new class
of objects accessible.

Consider some examples from automata theory. Turing machines are
finite automata with indefinitely extensible memory. The finitude of this
model implies that there is a hierarchy of three classes of sets or functions
that can be described or instantiated: those that can be computed, those
that can be enumerated, and those which are beyond computation. Aug-
menting the Turing machine model with access to a hypothetical (not actu-
ally implementable) external set, known as an oracle, produces an infinite,
strict hierarchy of classes beyond these three (known as the Kleene-Post
Hierarchy [94, 104]), and therefore open-ended innovation in our sense. Re-
stricting the Turing machine model by limiting access to memory produces
another strict hierarchy which corresponds very closely to a hierarchy of
formal languages known as the Chomsky Hierarchy [29]: random access
to memory yields the class of languages describable by context-sensitive
grammars, access to only the last item remembered yields the context-free
grammars, and no access to memory yields the regular languages. Again,
expanding a grammar with new types of production rules changes the level
of the formal language hierarchy, moving up a well-defined hierarchy.

The branch of theoretical computer science known as computational
complexity proves that restricting the number of steps or the amount of
memory an automaton can use also produces strict hierarchies of formal
languages [47]. Thus, for example, Turing machines that can run for a
number of steps bounded by an exponential function of the input size can
recognize languages that such machines bounded by a polynomial number
of steps cannot. Similarly, automata that can access no more memory lo-
cations than some exponential of the input size can recognize languages
that such automata with a polynomial bound cannot. Many of the most
important problems in computer science involve understanding when dif-
ferent resource bounds or different types of automata (such as deterministic
versus nondeterministic) produce genuine innovation, in the sense that one
variation can recognize languages that the other cannot. For example, the
famous P versus NP problem asks whether adding nondeterminism to poly-
nomially bounded Turing machines is an innovation or not. If it is, then
the hundreds of critically important practical problems in NP cannot be
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solved by algorithms that run in a reasonable amount of time [31, 43, 62].
Unfortunately, we do not know the answers to most of these questions.

In summary, there are three lessons to learn from theoretical computer
science that are relevant to this paper. First, enumeration can indeed
provide innovation, since algorithms exist to enumerate some sets that no
algorithm can fully describe. But this fact requires the abstraction of what
an algorithm can do “in the limit”, including the possibility that the algo-
rithm never halts. Which brings us to the second lesson: computational
complexity theory does indeed provide a context in which one can prove
that certain variations in finite computations, such as allowing exponen-
tially more memory access, generate innovations. Unfortunately, this the-
ory breaks down precisely where it becomes useful: with reasonable limits
on the number of steps or the amount of memory that a computation re-
quires. Therefore, theoretical computer science is a useful framework in
which to study open-ended innovation, but only in an abstract, mathemat-
ical sense. In particular, it does not currently directly explain open-ended
innovation in physical systems such as computer simulations or biology.

5.2 Downward Limits

Schrödinger hypothesized that living systems were only possible on the macro-
scopic scale, due to quantum effects at the atomic level [99]. More generally,
he argued that order on large scales was a consequence of disorder on small
scales, which he called the “order from disorder” hypothesis. For him, living
matter must display homeostasis, which is a maintenance of large-scale (relative
to the atomic scale) organization over time. But he also pointed out that living
things inherit and bequeath order along their lineage, and that the mechanism
for maintaining order through lineages must be small, on the molecular scale.
He even postulated that this material was probably an “aperiodic crystal” that
conveyed information via covalent bonds. Inheritance on the molecular scale
would be a possible explanation of hereditary variation arising, ultimately, from
quantum effects. Schrödinger’s breathtaking hypothesis prefigured the eventual
discovery of the biological function of DNA by Crick and Watson a decade later,
and both credited him as an inspiration for their work.

For our purposes, Schrödinger’s foray into the molecular basis of life reminds
us that innovation is only possible in physical systems that are sufficiently large.
If living things were too small, quantum effects would make inheritance impos-
sible: it would be impossible to maintain structure, and innovation is typically
only possible in physical systems that are sufficiently large [3].

5.3 Effectively Open-Ended

As explained above, the hierarchical organization of our meta-model imposes
strong limits to the open-endedness of any bounded system, particularly when
one considers type-2 open-ended events (emergence): the number of levels one
can model from a finite number of level-0 entities is severely limited by a po-
tentially exponential increase of level-0 entities dynamically linked in level-N
entities. Moreover, if one simply considers variation in a state space with a fi-
nite number of dimensions, each of which can take a finite number of values (for
example, a bitstring which forms a boolean hypercube), then the state space
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itself is finite and bounded, and so the possible variations are bounded. Strictly
speaking, the system is not open-ended. However, considering a system S at a
time t of its evolution, we propose to say that S is effectively open-ended if the
size of the population at the highest level of the hierarchy is large enough such
that open-ended events are still possible.

Physical systems (for example, the biosphere, techno-social systems) are ef-
fectively open-ended if one considers type-1 open-ended events (innovation). In-
deed, these systems have a sufficiently large state space and the states realizable
or explorable within a reasonable time (say, within the age of universe) are an
insignificant fraction of the entire set of “interesting” states. When considering
type-2 open-ended events (emergence), whether these systems are effectively
open-ended is for us quite literally an open question. Indeed, either the bio-
sphere or the techno-social systems are now limited by the finiteness of earth’s
resources and the possibility of the emergence of new levels of organization is
not clear9.

Now, consider computational simulations.10 The number of entities in a sim-
ulation is severely limited by computational power, including both CPU time
and memory. In the universe, there is a vast number of molecules; in a computer
simulation, there is a large, but not vast, number of memory cells (its “effective
unboundedness” is less effective). If we wished to simulate interesting models
with many levels, we could not do so from the bottom up: there would simply
be too many level-0 elements to simulate efficiently, or even to fit into memory.
Additionally, regularities in the dynamics of a level-N+1 entity comprising a
system of level-N entities tend to be on a longer dynamical timescale (slower
processes) than in the level-N entities themselves and the events we are seeking
are likely to be rare events. This implies the need for an exponential amount of
simulated time in a multilevel system. Thus the upward limits will be quickly
reached as the number of levels grows (that is, as emergence events accumu-
late). One can still simulate effectively open-ended systems if the total number
of levels in the system is low enough for the number of entities to be large.
However, though effectively open-ended, the system will eventually exhaust its
possibilities.

6 Simulation of Open-Endedness

Consider artificial life as an example of computational simulation. One of the
central goals of ALife is to use simulation to study and understand open-ended
systems, including open-ended Darwinian evolution [18]. In particular, we wish
to study how living systems have undergone successive major transitions from
the first replicative molecule to the techno-social level [74]. Systems of this kind
have a hierarchy of levels, with lower-level entities forming higher-level systems.
Thus this goal directly hits the computational limits we conjectured above and

9One can still argue that, on a larger horizon (namely on the level of the entire universe),
although the universe is bounded, the potential for novelty is unlimited, be they generated by
variation, innovation or emergence. Following this idea, one could consider that the universe
is effectively open-ended.

10As opposed to statistical simulations, such as “draw an infinite number of reals from
(0, 1), with an exponential distribution”, where innovation in the form of seeing new numbers
is certain. Our argument here applies to any physical simulation, not just to computational
ones.
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may be an inaccessible dream, at least with current computational technologies.
Hence we need to optimize the approach, taking stock of the exhaustion of
resources. What that means is that we need to hard-code some of the emergent
properties and laws at certain levels, rather than letting them emerge from lower
levels. Some hard-coding will cover the entire set of lower levels not considered
(the “generative” layer), and some will cover the examined (emergent) levels to
“cheat” (optimize, hard-code) certain behaviors through what we call shortcuts.

6.1 Generative Layer

The question of level-0 entities in natural systems is an open-question: is level 0
populated by molecules, atoms or even lower-level particles? Now, in a simula-
tion, one cannot start from too low a level, simply because it would naturally
increase the number of levels that separate level 0 from the level of interest for
the question under study. Thus, our multilevel model will generally possess a
lowest combinatorial level (level 0), which we refer to as “chemistry” or “artificial
chemistry” [8, 34]. This level should be able to subsume all the diversity created
by putative lower levels (atoms, particles, and below) and, conversely, provide
the necessary diversity of elements to the higher levels. This basal level pro-
vides the “physics” (rules and behaviours) and “chemistry” (combinatorics) of
the simulation, thus implementing level 0. For example, in biological evolution,
the existence of elements that can be combined through bonding dynamics into
molecules of different types—in itself a substantial compression of what goes on
in atom/quantum physics and quantum chemistry—provides different chemical
characteristics as a prerequisite for the variety we can observe at higher levels
of the hierarchy.

Examples of generative layers are numerous in the ALife literature. It can
be composed of bit strings as in the case of genetic algorithms (for example,
[54]), artificial molecules in artificial chemistry (for example, [59]) or code in
genetic programming (for example, [67]), to give a few examples.

6.2 Shortcuts

If one wants to study a layered system like the ones we envision in our meta-
model, one needs to simulate multiple levels, that successively emerge from
the generative “soup” of level 0. As conjectured above, such a simulation is
impossible to implement in practice for large values of N . We may thus need
to introduce new elements in our simulation that will simplify or accelerate the
dynamics of the higher levels. We call these new elements shortcuts since
they directly implement some properties of the higher level that, in an ideal
simulation, would emerge from the generative layer.

Shortcuts are hard-coded design optimizations manually introduced into the
simulation. One can consider the shortcuts as “cheats”, which limit the gen-
erality of the model. It would certainly be preferable to be able to simulate
open-ended systems (or at least effectively open-ended systems) without mak-
ing use of any such stopgap measures. This is clearly feasible, but the number
of emergent levels in the simulation will definitively be limited and this would
probably preclude the simulation of deep multiscale models11, such as those

11A two scale model is technically “multiscale”, but can perhaps be simulated in some cases.
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ranging from molecules to ecosystems. If one wants to simulate multilevel sys-
tems with a large enough number of levels, shortcuts will be necessary and, to
the best of our knowledge, all ALife simulators designed and implemented so
far have used some kind of shortcuts. It is better to be aware of this fact and
to use it explicitly, rather than to introduce shortcuts implicitly in a simulation
without even realizing it.

The problem of how to try to simulate OE can be reformulated as: How
to shortcut in a principled way? or, How can we design shortcuts that pro-
vide optimizations, without precluding the possibility of particular kinds of OE
of interest. Indeed, shortcuts provide optimizations by explicitly constraining
structures and behaviors at their level, rather than requiring these constraints
to emerge from the system’s behavior. Hence, specific shortcuts will enable or
constrain certain classes of OE.

When designing the simulation of an open-ended system, one crucial design
step is then the identification and implementation of relevant shortcuts. These
will be research-dependent, i.e they will depend on the specific question one
wants to answer with the simulation. Examples of such potential shortcuts that
might be inserted in certain simulations include individuality, replication, and
fitness.

6.2.1 Individuality

Individuality is the “mother of all shortcuts”. Entities of a level N > 0 are
hard-coded rather than emergent. This can be implemented in two slightly
different ways: either by directly simulating the dynamics of these entities,
which could be called an “identity shortcut”; or by setting boundaries that
group together entities of level N−1 in level-N entities, which would rather
be a “boundary shortcut”. In Figure 2, an identity shortcut hard-codes the
circles of subfigure C while a boundary shortcut hard-codes the dashed circles of
subfigure B. Obviously, this shortcut makes it impossible to observe emergence
at level N but it still enables emergence at level N+1. However, when limited
to the boundary part, an individuality shortcut enables innovation at level N .

6.2.2 Replication

Replication is a central process in biological evolution. In computational simu-
lations, a replication shortcut is the explicit implementation of operators that
replicate the entities at level N from the outside of the entities. This shortcut
generally comes with secondary ones, for example, to synchronize the replica-
tion of all the entities of the same level or to include variation operators that
slightly modify the offspring.

6.2.3 Fitness

Fitness in evolutionary computation is a classical shortcut. It replaces the differ-
ential reproductive success emerging from the difference between level-N enti-
ties (in terms of composition of level-N−1 entities), and from their interactions
in the level-N+1 population, by an explicit computation of reproductive suc-
cess according to some target task such as computing a given function, seeking
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“food”, gaining “energy”, and so on.12

Many authors have argued that explicit fitness precludes OE [9, 28, 88] and
some have proposed to replace it by implicit fitness or by subtler approaches
such as selection for novelty [69, 105]. This is sometimes merely a change in ter-
minology, renaming the target task with something more biologically sounding,
such as replacing “increasing a score” by “accumulating energy”.

However, OE should be possible with an explicit fitness at a level N (which
would shortcut differential reproductive success driven by interactions at level
N−1), providing that level N entities interact in such a way that level N+1
can still have an influence on their reproductive success. In effect, the variations
at level N (the phenotype) may induce variation at level N+1 (the ecosystem).
The fitness values of level N entities, though explicit, will then change due to
the downward causation of level N+1 on level N (that is, the same phenotype
could have different fitness depending on its neighborhood). This could happen,
for example, when the model includes an explicit fitness for resource uptake but
that this resource is shared by all individuals (which is, for example, the case in
Tierra [88]).

6.3 A General Architecture for Open-Ended Simulations

In Figure 5 we identify a general architecture for layer-based emergent simula-
tions of OE. This architecture separates out the base layer, implementing the
physics and chemistry, from the shortcuts at higher levels. The base layer of
“generative rules” provides the implicit coding of all levels below the lowest
simulated level. These rules generate and enable the lowest level of simulated
entities, and the relevant lowest level of an internal environment.

In addition, each simulated layer may have some hard-coded shortcuts. The
collection of these is the set of “structuring rules”. These rules provide opti-
mizations by explicitly constraining structures and behaviors at the level, rather
than requiring these constraints to emerge from the system’s behavior. In par-
ticular, these rules might provide shortcuts for determining or recognizing the
identity of entities, for communicating between entities at a level, for providing
parts of the internal environment, and for explicitly implementing “downward
causation”-style constraints imposed by higher levels of the system.

Note that, for population systems in this architecture to be at a higher level
than their constituent entities, they cannot be mere aggregate systems (which
do not have a level in our meta-model) but must be genuine system entities.
If we were to consider a population-as-aggregate system to be at a higher level
than its constituent entities, then we could never get interesting emergence (in
this meta-model).13 This is because we would generate the higher level (and
get emergence) merely by virtue of having the population; there would be no
opportunity to generate the (emergent) new level later, when the higher-level
system entity itself arose. Making a population into a system entity immediately
is a form of shortcutting an emergent transition.

12Fitness in biological systems is defined as differential reproductive success. But in nature
fitness is assessed retrospectively, through natural selection.

13This is another possible difference between our computer simulation motivated metamodel
and biology. This argument in a biological context would imply that innovation in living
systems is impossible without group selection. This would be a highly contentious claim.
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Figure 5: Simulation with shortcuts, generic figure. Levels 0 is abstracted by the set
of generative rules encoded in “A”. Levels 1 and 2 are predefined by the simulation
(parts of them are hard-coded) but they include emergent parts that enable variation,
differences or innovation. Level 3 is fully emergent, not at all included in “B” (but
may be anticipated by the modelers when designing “A” and “B” since they want to
observe 3). If level 3 is a system made of entities of lower levels, then its emergence is
a transition. If the level 3 entities are replicators, then emergence of level 3 is a major
transition.

32



6.4 Changing the Model

The previous architecture provides a methodology to simulate open-ended sys-
tems by means of software components that are not open-ended. However, if
one wants to use OE to create software technologies in order to implement cre-
ative machines, a.k.a. computational “living technologies”, one may want to
implement OE directly at the software level. But how can changes working
outside the model be implemented in software? In conventional programming
languages, the code is fixed, so the design model is fixed. All that happens is that
the pre-existing code executes. Generally, no new code is produced. In some
languages, however, it is possible for code to modify itself as it runs14. In stan-
dard software development, self-modifying code is generally to be avoided, as it
makes it difficult if not impossible to know beforehand what the code will do;
and therefore very difficult to design (or debug) code to demonstrate specified
behaviours. Developers usually write code to do something specific and well-
defined (such as calculate payroll, control power stations, or launch small irate
birds at acquisitive pigs). In low-level assembly languages, self-modifying code
is relatively easy to achieve. “Automata chemistries” (Tierra, Avida, Stringmol)
are examples from ALife that exploit this concept, constructing entities that are
strings of assembly language instructions, hence new code (see further discus-
sion in §7.5). Some higher-level languages have also been designed explicitly to
facilitate program self-modification [107].

In most high-level (structured) languages such as C++, Java, Python, self-
modification requires special effort and is not possible in all cases (other than
using the language to implement an interpreter for a new language in which it
is possible). A “reflective” language can examine its own code; some languages
(particularly interpreted rather than compiled languages) can also produce new
code on the fly. Such a language is needed to implement software that can
change its own model as it runs. The final model of the system, implicitly
produced by executing the software, will need to be inferred.

6.5 Capturing the Novelties

The shortcuts and corresponding simulation code above explicitly implement
the (computational) model of the simulation. In order to capture novelties that
change the model (innovations) and meta-model (transitions), there needs to be
simulator code to make these changes. There are several possibilities:

1. The emergent novelty is recognized outside the simulation. The simulation
data is analyzed and the presence of relevant emergent “model-breaking”
phenomenon is inferred, but not explicitly realized as a new entity or
level in the simulation (for example, the emergence of a flock in a boids
simulation [93], recognized through visualization by the observer or by
statistical analysis, but not explicitly present in the simulation code).

2. The type of emergent novelty is anticipated and recognized, with pre-coded
recognizers present in the code, available to report it once it appears (for
example, a boids simulation with a pre-coded flock detector, that recog-
nizes if and when it emerges).

14This is different from external modification, or “patching”, running code.
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3. The type of emergent novelty is anticipated and captured, with pre-coded
structural rules present in the code, available to recognize and make it a
component of the simulation once it appears.

4. The emergent novelty is somehow emergently recognized by the simulator,
and new code is generated by the simulator to capture the recognition (for
example, self-modifying code [112]).

5. The emergent novelty is somehow emergently captured by the simulator:
once recognized, new shortcut code is generated by the simulator to cap-
ture the specific emergence (for example, self-modifying code [112]). The
difference to the previous situation is that the new shortcut here is not
only detected as an event but shortcut code is also created that accelerates
the simulation by explicitly coding the new, emergent, level.

6.6 Design Principles

We can use the CoSMoS (Complex Systems Modeling and Simulation) ap-
proach [4, 6, 109–111] to help implement a principled computer simulation that
conforms to the architecture described above. CoSMoS is a particular approach
to simulation of complex systems and their emergent properties, but the com-
ponents are necessary (if not always explicitly identified) in any principled sim-
ulation work. The components include:

• Research Context: a description of the research question(s) to be ad-
dressed by the simulation, for example, “to understand the system’s ex-
ploration of its designed search space”, or similar.

• Domain Model: a scientific model of the biological, socioeconomic or other
system of interest, including the emergent levels and OE classes of interest
(for example, speciation, or a major transition, in an evolutionary model),
such as shown in Figure 2 or 4.

• Platform Model: an engineering model of the software simulation system.
It does not include a model of desired emergent properties, explicitly en-
suring that the answer is not coded into the software. It includes, however,
additional features needed for efficient simulation, such as the generative
and optimization shortcut components in our proposed architecture (Fig-
ure 5), and interfaces.

• Simulation Platform: the software implementation, built from the Plat-
form Model specification, suitable for running Simulation Experiments.

• Results Model: a scientific model analyzing the output of the simulation
experiments in terms of Domain Model concepts.

• Argumentation: that the simulation is “fit for purpose” relative to the
Research Context; specifically here, that the shortcuts neither inhibit nor
hard-code the desired OE in the simulation platform.

• Meta-Model: a model encompassing the concepts used in the Domain,
Platform, and Results Models, to ensure consistency between these con-
cepts across the process.
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Figure 6: Open-ended novelty simulation design within the CoSMoS approach. The
Domain, Platform and Results models are instantiated from a common meta-model,
and related to each other as shown (see text for further explanation).

Within the CoSMoS approach, the framework described in this paper gives a
structured way of thinking about the design of a system to display open-ended
novely, including the model, any simulation of it, and the effect of particular
design decisions.

For example, we could design a simulation to investigate our open-ended
novelty framework within the CoSMoS approach by producing the following
components (summarized in Figure 6):

1. A meta-model: given that our framework defines novelty with respect to
a model and a meta-model, it is necessary to define a particular meta-
model. The meta-model defined in this paper (Figure 3) is one possibility;
others might be used to capture other forms of OE. Whatever meta-model
is chosen, it must be sufficient to support the desired concepts of OE.

2. A domain model: an instantiation of the meta-model in domain terms, in-
cluding desired emergent properties (where known), and excluding short-
cuts.

3. A platform model: another instantiation of the meta-model related to the
domain model in the following way:

• the domain desired emergent properties are not present in the plat-
form model, to ensure that they do not become explicitly coded into
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the simulator

• once the necessary shortcuts have been determined, and have been
argued not to preclude the desired emergence, the relevant domain
components are replaced with their shortcut alternatives in the plat-
form model

• the remaining domain model components are transferred across to
the platform model

• instrumentation and interfaces are added, to allow the simulator to
be used to run open-ended novelty experiments; this might include
emergent recognizers and model changers (see §6.5), where appropri-
ate.

4. A simulator built to the specification that is the platform model.

5. A results model: a further instantiation of the meta-model, suitable for
capturing and analyzing observed emergent properties of the simulator in
domain model terms.

The CoSMoS approach is a principled way to examine complex systems.
There are other possible approaches that can be used to avoid confusion and to
make sure that the novelties discovered in a simulation were not already built
into the system from the outset. One should use some principled, coherent
methodology, so that one can make meaningful claims about types of novelty.

7 Illustrative Examples

In this section we explain via examples from the literature how the model/meta-
model approach captures the presence and absence of OE in both computational
systems (Game of Life, §7.1) and real world systems (experimental biological
evolution, §7.2), and in particular how it is all relative to a model/meta-model.

Then we give examples of genetic algorithms (§7.3), genetic programming
(§7.4), and automata chemistries (§7.5) to demonstrate some of the “shortcuts”
described earlier, how they constrain the amount of novelty, and what conse-
quences these shortcuts have for OE.

7.1 Game of Life

Conway’s Game of Life (GoL) [22, 42] is a two-dimensional cellular automaton
(CA), and a typical example quoted when talking of novelty and emergence.
Here we show how GoL exhibits various kinds of novelty relative to a model
instantiated from our meta-model. Other authors discuss emergence in GoL in
different terms, for example [46].

The base-level model has the following components: the cells, atomic enti-
ties at level 0 that can be in state ‘alive’ or ‘dead’; the entire GoL arena, an
aggregate system comprising a collection of cells laid out in a grid pattern; the
environment, considered as providing the space and time for this grid; and in-
teractions between cells, which communicate their state to their eight nearest
neighbors, and behave by synchronously updating their own state based on the
GoL rules: each timestep: if a cell is dead and has exactly three live neighbours,
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it becomes alive; if it is alive and has fewer than two or more than three live
neighbours it dies.

As the CA executes, cells change state, exhibiting variation, that is, type-0
novelty (a change within the existing model only modifying the value of the
existing state).

Rapidly, the observer notices the appearance of certain patterns: some lo-
calized groups of cells switch through cyclic patterns (on a longer time-scale).
These localized groups are modeled as level-1 entities, comprising the relevant
level-0 cells and the local grid environment over an extended number of update
cycles. Thus the meta-model is augmented with a new level: level 1; and the
model is augmented with a specific system entity type: an oscillator (includ-
ing period-1 oscillators called “still lives”). This modeling of oscillators is then
an example of emergence, that is, type-2 novelty (a change to the meta-model
adding a new level).

The observer also notices further patterns that seem to move across the grid,
called “gliders” (or, more generally, “spaceships”). These are also modeled as
level-1 entities, comprising the now-changing sets of cells and local grid envi-
ronments that encapsulate these patterns. This modeling of gliders is then an
example of innovation, that is, type-1 novelty (a change to the model adding a
new entity type).

Then, the observer notices that these moving gliders interact by colliding:
such interactions can produce new oscillators, gliders, and other patterns. This
modeling of gliders is also an example of innovation, that is, type-1 novelty (a
change to the model adding a new kind of entity, hence a new interaction type).

Eventually, the observer notices that these moving gliders and oscillators can
be positioned to interact in such a way that they form a level-2 entity: a Turing
Machine [90]. This model of Turing Machine in the GoL is then another example
of emergence, that is, type-2 novelty (a change to the meta-model adding yet
another new level).

In this example, the scientific model and meta-model are changed based on
observations, hence innovation and emergence are observed. The possibility of
innovation and emergence spring from the GoL engineering model that is itself
not changed during the process (see figure 1).

7.2 Experimental evolution

Experimental evolution is a biological discipline where organisms evolve in con-
trolled experiments, in order to explore natural evolution in real time. By
defining experimental protocols, and preparing isolated strains of organisms for
observation, shortcuts are introduced into the process, removing it from the
natural evolutionary environment.

Since many predictions of evolutionary biology assume very large effec-
tive populations or many generations, most experimental evolution systems use
viruses or bacteria, though other microorganisms (such as yeast and other fungi,
nematodes, and more) and even some larger organisms (including fruit flies,
mice, plants, and more) have also been used. The typical experiment involves
several generations of the organism(s) under study, while selecting for some
trait. Given a response to selection, which is nearly always present, the biol-
ogist can untangle the causes of the response using genetics, transcriptomics,
metabolomics, or other techniques.
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Experimental evolution is often “open-ended” only in that the experimenter
does not specify or enforce pre-determined mechanisms for adaptation. How-
ever, this is not the kind of open-endedness we defined in this paper. Yet, inno-
vation - in our use of the term - commonly emerges, such as when viruses adapt
to a new host, new temperature, or other environmental change in an evolving
viral/bacterial system. Some experimental evolution systems, such as Richard
Lenski’s famous “long term evolution experiment” have shown a clear open-
ended dynamics (in our use of the term). Lenski has transferred over 62,000
generations of E. coli as of the time of this writing (personal communications),
without (intentionally) selecting for any particular phenotype [12]. Different
lineages of organisms with clearly distinct phenotypes and reproductive fitness
have emerged during the course of this experiment. More recently, after over
27 years, a genuine speciation event may have arisen, where the bacteria have
developed the ability to metabolize an entirely new energy source, which was
always present in the media but never used: citrate [11, 24]. Other open-ended
events have been observed in this experiment such as the observation of a stable
polymorphism [83] that may correspond to the emergence of a new ecological
level. One of the main difficulties in experimental evolution is to understand
how the “shortcuts” (e.g., serial transfer, culture medium, artificially stable
environments ...) are likely to trigger the observed OE events.

7.3 Genetic algorithms

The genetic algorithm (GA) [45, 54] is another example. GAs have exhibited
an astounding ability to produce creative and surprising solutions to technical
optimization and design problems [91].

GAs work by manipulating a set of parameters that code for the solution of
an application problem, such as the minimization of a function. Each of these
parameters might be considered a level-0 entity, with the set of parameters
providing a solution being an entity at level 1. In GAs, this is called a genome.

At a still higher level in the GA (level 2) sits the so-called fitness function,
a short-cut for helping to judge the quality of a solution. In biology, fitness is
an implicit concept assigned retrospectively to individuals based on their repro-
ductive success. In GAs, fitness is usually explicitly defined, while individuals
are implicitly assumed to be produced by the genome. We described evolution-
ary computation above in terms of function minimization, where the difference
between the function and what is required for the minimum (the error) is equiv-
alent to (inverse) fitness and can be used to judge solution quality.

The list of fitness values can now be used to provide a selection signal from
this level-2 system to level-1 entities by removing low-quality solutions and thus
providing space for new individuals in the population generated by variation
processes. The actual variation is produced by random change on individual
parameters (mutation) or by choosing sets of parameters from different individ-
uals (recombination).15

Often a set of discrete parameters can encode a solution for the problem
and the number of dimensions does not change. Thus, the space of all possible

15The variation is technically pseudorandom, being generated by a deterministic algorithm.
This process is itself a lower level system in the model. Details of this level can significantly
affect GA behavior.
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Sets of rules: 
A.  Generative rules compressing level 0 
B.  Shortcuts (optimization rules compressing 

parts of levels 1, 2…)  
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Observed, 
program data 
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program	  code	  
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Figure 7: Simulation with shortcuts, GA example. In a GA, the level of interest is
the individual. These individuals are grouped into a population and they are made of
elements (genome, phenotype) that give them their dynamic. Now the population level
is a mere aggregate of individuals (see section 6.3), hence not an explicit level in the
hierarchy. Similarly, the elements that compose the individual and their relationships
(e.g., the genotype-to-phenotype mapping) are explicitly encoded in the software. So
the classical GA structure is a level 2 composed of individuals that evolve through
variation events imposed by a fully shortcutted lower level and a selection pressure
imposed by a fully shortcutted higher level. Note that for sake of clarity we distinguish
the generative rules (A) from the lower level chemistry rules in box (B) but that the
latter could have been merged with the former.
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combinations of parameters (and therefore solutions) is bounded. Yet, still in-
teresting and novel solutions might emerge (despite using only type-0 novelties)
as the combinatorial spaces under consideration quickly exceed the number of
elementary particles in the universe. The limiting factor in GAs seems to be
the fixed fitness function, which leads the search sooner or later to stagnating
fitness plateaus.

The situation with respect to shortcuts is depicted in Figure 7. A genetic
algorithm as well as other similar evolutionary systems are highly constrained.
Individuals (level 2) are organized in a population (level 3) with an entirely hard-
coded structure that imposes selection on individuals. Individuals are made of
data but some of their properties are hard-coded (individuality, replication).
Individuals are made of genes that are chemical entities (level 1) producing
the variation. Here, however, variation is hard-coded and cannot change. The
generative rules (denoted by “A” in Figure 7) are also highly simplified: they
are a fixed-size bitstring.16

7.4 Genetic programming

Genetic Programming (GP) [7, 67] is a computational method using similar
principles as GAs. The individuals under variation and selection are computer
programs or other active entities. Here, type-1 novelties make their regular
appearance, as a result of the active nature of the required solution. Still, an
explicit fitness function (often unchanging) governs the procedure and leads to
improved solutions. Individuals in GP have to accommodate regular dimen-
sional changes and should be better considered behaviors of their genomes [40].

Level-0 entities in this case are elementary behaviors that might be useful
in the context of the problem. An example might be a GP system learning to
play a game like chess. The combination of elementary behaviors makes up an
individual able to play a game of chess. This would include the judgement of
particular positional situations which would lead to different responses. These
game-playing strategies would be level-1 entities subjected to type-0 and type-1
changes, again controlled by random mutations and recombinations.

Level 2 would be a more or less successfully played game. Here we can see
that higher levels require the integration both in time and space of what is
coded in the genome of an individual. Again, the constraints to the GP model
are severe and tend to greatly limit the emergence of novelty.

In some forms of genetic programming, however, the mechanisms of varia-
tion are not fixed. For example, in “meta-genetic programming” a population of
variation operators co-evolves with the main population [36, 61], while in “au-
toconstructive evolution” systems the individuals in the main population are
responsible both for problem solving and for producing offspring with variation
[106, 107]. In these systems the mechanisms of variation are themselves sub-
ject to variation and selection, and hence can evolve. The potential that these
systems have for producing open-ended novelty is a subject for future study.

16Note that open-ended GAs could be implemented providing the bitstring length and the
number of genes it encodes can evolve. In this case innovation events could be possible as
observed, e.g. in [65].
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7.5 Coreworlds/Automata Chemistries

So-called “coreworlds” or “automata chemistries” denote a loosely defined set
of related, but distinct, evolutionary computational systems. Examples include
Coreworld [87], Tierra [88], Avida[1] and Stringmol [51, 52]. These are concep-
tually, or superficially, similar to GP systems, in that the Darwinian individuals
are computational processes (executing programs) hosted in some shared, or
at least interconnected, memory system17. However they should be contrasted
with GP systems in a number of important respects.

First, replication is not implemented by shortcut: the processes are responsi-
ble for their own replication. Indeed, non-replicating or sterile processes can be
instantiated by design, or can arise through spontaneous perturbation, and can
significantly influence evolutionary dynamics; a phenomenon which is not possi-
ble in most GP (or GA) systems where all individuals are directly replicated by
shortcut, regardless of their intrinsic functionality. As one specific consequence
of this self-replication, fitness is, to some significant extent, intrinsic rather than
extrinsic.

Second, the individual processes execute (pseudo-)concurrently, and their
dynamic interaction typically constitutes another significant factor determining
relative fitness.

Third, the programming formalism is usually based on a machine code rep-
resentation (translated to an assembler-like representation in the user interface);
as opposed to the high level formalisms (e.g., lisp) typically adopted in GP. This
formulation makes self-modification/metaprogramming (the ability of programs
to treat their own code, and that of other programs, as data to be operated on)
very natural and easily accessible. In almost all empirical work with coreworlds,
this metaprogramming forms the basis for implementing replication through a
mechanism of direct self-inspection. However, this is not in any sense intrinsic
to the underlying platforms, and some examples exist in the literature of imple-
menting fully von-Neumann style self-reproduction with mutable GP-mapping
instead [14, 49, 76].

In terms of the framework presented here, all coreworlds have a base-level
model (level-0) which includes one or more discrete random access memory sys-
tem(s) and a dynamic (and indefinite) number of execution threads (CPUs).
At this level, they generally support type-0 novelty through stochastic pertur-
bations of memory contents. An individual process (level-1) is constituted by
one or more CPUs coupled with some configuration (content) of one or more
segments of memory. All coreworlds directly allow for type-1 novelty at level-1
(the spontaneous and open-ended introduction of new types of level-1 entities).
This is typically triggered through the type-0 stochastic perturbation of memory
contents at level-0; but can also be generated through (re-)writing the content of
memory locations (i.e., by programmatic action). Either type of mechanism can
lead to expansion (or contraction) of the memory segment(s) in use by any given
process. That is, even if level-1 individuals are modelled as dynamic systems on
a state space, the dimensionality of this state space can itself change.

Level-1 individuality in coreworlds (individually distinguished and identified
executing processes) is normally shortcut to the extent that there is external

17The “core” in “coreworld” derives from the earlier CoreWar programming game [33], and
invokes the typical linear, random access, memory configuration originally associated with
early magnetic core hardware.
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“operating system” support to group together one or more execution threads
with one or more memory segments, which the system monitors and logs as
constituting individuals. However, the coherence of this shortcut may be blurred
or undermined if the memory segments are drawn from a shared address space,
because in that case individual processes may still potentially read, write, or
execute memory segments that are notionally associated with a different process
(or with none). This can have significant phenomenological consequences in
particular coreworld systems.

Typical experiments in these systems are externally seeded with one or more
such (level-1) individuals, which have been designed to have the property of
self-replication. Further, the self-replication mechanism is such that it supports
the possibility of heritable mutation (type-1 novelty within the class of self-
replicating level-1 individuals). Thus, the meta-model already allows for the
development of populations (lineages) of level-1 individuals having essentially
identical programmatic behaviour (by virtue of identical initial memory con-
tent). These lineages are then level-2 entities that can be classified into distinct
strains, which exhibit typical ecological and evolutionary phenomena. However,
because these strains were already part of the meta-model, their appearance
does not generally constitute type-2 novelty (emergence).

That said, an exception might be argued for the Amoeba coreworld sys-
tem [81]. In that case, it is not seeded with self-replication functionality at
level-1, but that spontaneously emerges. The system was conceived and de-
signed with that specific possibility in view, as have been several autoconstruc-
tive evolution systems [106, 107]. Nonetheless it can be said that the meta-model
initially lacks any coherent level-2 entities; but once the level-1 self-replication
functionality emerges, then such population-lineage entities must be added to
the meta-model (i.e., level-2 must be introduced) and therefore this is properly
an example of type-2 novelty.

Returning to the case of coreworlds where self-replicating level-1 individuals
are externally seeded, there are still some subtleties in classifying the types of
novelty arising. In the case of the “original” Coreworld [87], although seeded
with coherent self-replicating level-1 individuals, the self-replicating function-
ality (and thus conventional Darwinian evolutionary dynamics at the level-2
of interacting lineages) is typically lost very quickly, due to unrestricted over-
writing of memory segments notionally associated with different individuals18.
This could be modelled as a type-2 novelty where the meta-model is changed
by losing a level. By contrast, Tierra introduced a critical design feature of a
“write protection” shortcut. This allows individuals to protect against external
disruption of their own “allocated” memory segments, while still allowing them
to pervasively read the contents of all memory (allocated or not). This ensures
reliable persistence of the self-replication functionality and thus the level-2 of
distinct strains. Unfortunately, in itself, this also allows a single self-replicating
seed process to generate an exponentially growing lineage that quickly exhausts
(allocates) the entire, finite, memory system. This would prevent any further
replication (since no more memory segments can be allocated), and bring evo-
lution (open ended or otherwise) to a halt. Accordingly, it was necessary to
introduce a further, additional, shortcut, the so-called “reaper”, which stochas-
tically “kills” random processes, and deallocates their memory segments (and

18Strictly, Coreworld does not incorporate a memory “allocation” shortcut per se at all.
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destroys their execution threads). This does allow Tierra to exhibit sustained
type-1 innovation at the level-2 of strains, including phenomena of selection
and diverse forms of parasitism.

In practice however, evolutionary novelty even in Tierra quickly “plateaus”.
While there is continuing generation of type-1 novelty at the level-1 of individ-
uals, and this does continue to generate new, distinct, strains at level-2, these
seem to exhaust the scope for any further distinctive ecological or selective be-
haviours at level-2. That is, there is no further even type-1 novelty at level-2,
and certainly no generation of identifiable, coherent, entities at any higher level
(i.e., no instance of type-2 novelty of emergence).

The Avida system sought explicitly to open up further evolutionary poten-
tial in a coreworld system (as compared to Tierra) by adding the possibility for
additional, externally specified, “behavioural challenges”. These take the form
of “tasks” that level-1 individuals may complete, and by doing so may enhance
the Darwinian fitness of their corresponding lineages (strains). While this does
lead to a diverse range of interesting phenomena, for the purposes of the current
discussion, it does not seem to add any decisive new feature. In particular, the
“plateauing” of novelty phenomenon is still observed. It is delayed somewhat
while solutions are sought for the externally defined tasks. Once those tasks
are satisfied, evolution again stagnates as, within the system itself, there is no
mechanism for new tasks to arise. And, as with Tierra, there is no case of type-2
novelty (emergence of level-3 entities).

For the moment, it is an open (and active) research question whether the
coreworld approach can be further developed in a way that would significantly
extend its capability to exhibit open-ended evolution. As a minimum, any such
development would seem to require mechanisms for generation of new selective
“niches” (i.e. where selection, at the level-2 of strains, is not operating in just
a single fitness landscape) and for the potential “individuation” of new entities
at level-3.

8 Conclusions

8.1 Summary

In brief summary, our argument is:

• Models and meta-models are used for building both scientific and engi-
neering models of systems (they may be implicit)

• We define types of novelty and open-endedness with respect to the system’s
current model and meta-model:

– Novelty in an observed system is classified as:

0. Variation: novelty within the model

1. Innovation: novelty that changes the model

2. Emergence: novelty that changes the meta-model

– Open-ended event: an event that results in innovation or emergence

– Open-ended system: a system with the ability to continually produce
open-ended events
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• We provide one particular meta-model, incorporating the concept of levels,
which allows it to capture “major transitions” as emergent events

• We introduce simulation “shortcuts”: hard-coded behaviours at different
levels needed to implement effective computer simulations

• We describe some illustrative existing systems in terms of their types of
novelties and shortcuts

8.2 Discussion

The constant emergence of novelty from complex systems is a fundamental phe-
nomenon of nature, societies, and computer simulations for which one might
desire a unified theory. However, as we have shown, it is difficult to precisely
characterize a notion of open-endedness that works in all cases, so that a general
theory of open-endedness is hard to come by. The barriers are both conceptual
and computational, as we have highlighted in the boxes above. However, we
have argued that it is possible, and even useful, to attempt such a general the-
oretical framework, without committing a priori to any particular application
domain.

One function of a general theory would be to develop domain independent
models of open-endedness, so that predictions and experiments in one domain
might support cross-domain conclusions. We have presented a meta-model for
open-endedness that we have argued can encompass similarities between models
of open ended evolution in biological systems, the emergence of socio-economic
systems, and computer simulations. We have applied this meta-model specif-
ically to the unbounded emergence of novelty in computer simulations, with
sufficient software engineering detail to show that our theoretical aspirations do
not sacrifice practical applications.

Our emphasis on computer simulations is a pragmatic choice. Suppose we
had chosen biological evolution to make our argument. Life on earth has demon-
strated continuing emergence of novelty, but it has taken billions of years and
a vast number of molecules and organisms, not to mention the abiotic and en-
ergetic richness of an entire planet, to do so. While a general theory should
be able to encompass this grand sweep of biological complexity, it would be
very difficult indeed to test. The best one could hope for would be to develop
models of open-endedness that predict, and hopefully predict the parameters
for, specific biological phenomena.

In any case, biological models alone are insufficient; models of biological
innovation should be paired with laboratory or field experiments. This has been
done in some specific domains, such as the emergence of cooperation, resource
competition, virulence, and collective behavior. Much of this work has been
done in microbial systems such as bacteria and yeast, since the populations
sizes and timescales involved are amenable to human experimentation. But
none of the models or experiments of which we are aware are genuinely open
ended, in the sense of this paper.

The previous two paragraphs also apply, mutatis mutandis, to socio-economic
systems. One could argue that the emergence of human socio-political systems
is the latest manifestation of the emergence of eusociality in primates, and as
such is a subset of biological evolution. Hence it should be largely appropriate
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to apply a general model of perpetual emergence of novelty in biological evolu-
tion to socio-economic systems – but at different temporal and physical scales.
It would be difficult to test such models experimentally, since we lack both the
time and resources for controlled experimentation on entire human social sys-
tems, and it would be unethical in any case. However, historical data provide
an empirical basis for model testing in this domain. A sufficiently rich model of
socio-economic evolution should predict the emergence of new social, political,
or economic forms of organization, consistent with historical experience (see
Morris [78] for attempts in that direction).

More to the point of this paper, biological and socio-economic evolution are
both subject to the same general theory of open-endedness, and so a sufficiently
good model should apply to both. A general theory should provide a dictionary
that would help us translate results from one domain into the other. One could
never state that human social structures are the same as, say, bacterial biofilms.
But a unifying theory would allow one to express exactly what they have in
common, without simply anthropomorphising bacteria or dehumanizing people.

By the same argument, computational models based on a general theory of
open-endedness should share enough with biological or socio-economic models to
lay out exactly how computer simulations of open-endedness inform hypotheses
about the emergence of novelty in biology and society. There is an established
field of artificial society simulation, and simulations of biological phenomena
are legion. Few of these computer simulations, however, explicitly present a
model for the emergence of novelty together with a theoretical argument that
the model is the same for both the simulation and the system being simulated.

We have argued that such a general theory of open-endedness is possible, and
that it can lead to meta-models of the emergence of novelty that are appropriate
for computer simulations. We do not claim, however, that the specific meta-
model we present is always the most appropriate for a given analysis. Nor have
we demonstrated how our computer simulation model is appropriate beyond the
domain of computer simulations. There is probably no single meta-model for
all questions, even if one has a general theory of open-endedness. Nevertheless,
our hope is that attempting to develop such a theory, while remaining cognizant
of the specific models that it would support, can be useful for prediction and
experimentation across multiple domains.

There remain both conceptual and technical barriers to developing such a
theory. In a sense, these are grand challenges to open-endedness. We state some
of these challenges in the box, using the terminology we developed above. Given
the absence of a theory, we believe that novelty, innovation, emergence and
open-endedness constitute some of the most fascinating topics in the scientific
discourse of today.

GRAND CHALLENGES
to Open-endedness

C-1: It remains an open question how to fully characterize how specific
structuring rules (shortcuts) constrain specific classes of open-endedness.
Consequently, it is unclear how to design a sufficiently rich set of generative
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rules such that no structuring rules are needed to explore even a three level
model.

Thus, we challenge others and us to develop a simulation that can: (1)
“write” its own structuring rules that act as shortcuts to bootstrap itself
to the next level; (2) learn the structuring rules that fix the downward cau-
sation arrows [37]; and (3) recognize higher levels and higher level entities.

C-2: The hierarchical meta-model we present above is largely mereological,
which has limitations that need to be explored. In particular, when a higher
level of abstraction affects a lower level, the system is no longer describable
in terms of a strict hierarchy. For example, when an ecosystem, which is
an aggregation of individuals, changes the abiotic resources available to
individuals, individuals adapt, changing the ecosystem.

It is even unclear what an “individual” or level zero entity is, in natural
systems. For example, a human is an aggregation of thousands of species of
bacterial, human, and viral genomes, where each constituent affects both
the others and aggregations of the others. For example, endogenous retro-
viruses move genes into human genomes, where the genes reproduce and
evolve in response to human behavior. Genes from endosymbiosis, such as
those in the mitochondrial ancestors, move into the host genomes, where
again they evolve according the activities of the host.

It may be the case that some specific research questions can only be
answered with non-mereological models. So the challenge is to develop
non-mereological models and demonstrate them in simulation.

C-3: Another challenge is to develop metrics of open-endedness that can
be applied across the full range of biological, socio-economic, and computa-
tional complex systems. How open-ended does a model have to be in order
to, say, predict when an endosymbiotic gene will migrate into a host, and
then into a host of the host?

C-4: There are specific emergent systems that remain to be modeled and
simulated. In particular, it would be helpful to have sufficiently rich models
and meta-models, along the lines we have presented, with which the major
transitions of life can be captured [74].

C-5: We also challenge others and us to model and simulate the move-
ment of internal information systems such as genes, to external ones such
as databases, and then back into internal ones, for example by genetic ma-
nipulation.

C-5: Another challenge is to model and simulate the emergence of high
level socio-economic entities such as corporations or governments, that then
change the behavior of their constituents in such a way that new levels of
socio-economic entities emerge, for example by merger or revolution.

C-6: A challenge in the realm of social systems would be the emergence of
culture or specific languages, which then affect the nature of other cultures
or languages.
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