117 research outputs found

    Functionalized composite nanofiber membranes for selective steroid hormone micropollutants uptake from water: Role of cyclodextrin type

    Get PDF
    Cyclodextrins (CD) entrapped in nanofiber composite membranes are potential selective adsorbing materials to remove steroid hormone (SHs) micropollutants from water. This study aims to elucidate the role of CD macrocyclic host type on the SHs inclusion complexation and uptake in filtration. Three CD types (α, β, and γ) are cross-linked with epichlorohydrin to form polymers (αCDP, βCDP and γCDP) and entrapped into a nanofiber composite membrane by electrospinning. TGA analysis confirmed the CD entrapment into the nanofiber without loss of CD molecules during filtration. The CD type plays a dominant role in controlling the removal of different SHs. A similar removal (range 33 to 50 %) was observed with αCDP, irrespective of the SH type. In contrast, removal and uptake dependent on SH type were observed for β and γCDP, with the highest removal of 74 % for progesterone, followed by estradiol (46 %) and estrone (27 %) and the lowest removal of 3 % for testosterone. Molecular dynamic (MD) simulation revealed a stronger and more stable complex formed with βCDP, as demonstrated by: i) the closer spatial distribution of SH molecules from the βCDP cavity and, ii) the quantum chemistry calculations of the lower de-solvation energy (+6.0 kcal/mol), which facilitates the release of water molecules from interacting interface of CD molecule and hormone. Regarding γCDP, the highest de-solvation energy (+8.3 kcal/mol) poses an energetic barrier, which hinders the formation of the inclusion complex. In the case of αCDP, a higher interaction energy (-8.9 kcal/mol) compared to βCDP (-4.9 kcal/mol) was obtained, despite the broader spatial distribution observed from the MD simulation attributed to a dominant hydrogen bonding interaction with the OH primary groups on the external surface cavity. The findings highlight the relevance of the CD type in designing selective adsorbing membranes for steroid hormone micropollutant uptake. Experimental results and MD simulation suggest that βCD is the most suitable CD type for steroid hormone uptake, due to a more stable and stronger inclusion complexation than α and γCD

    Stabilization of Haloalkane Dehalogenase Structure by Interfacial Interaction with Ionic Liquids

    Get PDF
    Ionic liquids attracted interest as green alternatives to replace conventional organic solvents in protein stability studies. They can play an important role in the stabilization of enzymes such as haloalkane dehalogenases that are used for biodegradation of warfare agents and halogenated environmental pollutants. Three-dimensional crystals of haloalkane dehalogenase variant DhaA80 (T148L+G171Q+A172V+C176F) from Rhodococcus rhodochrous NCIMB 13064 were grown and soaked with the solutions of 2-hydroxyethylammonium acetate and 1-butyl-3-methylimidazolium methyl sulfate. The objective was to study the structural basis of the interactions between the ionic liquids and the protein. The diffraction data were collected for the 1.25 angstrom resolution for 2-hydroxyethylammonium acetate and 1.75 angstrom resolution for 1-butyl-3-methylimidazolium methyl sulfate. The structures were used for molecular dynamics simulations to study the interactions of DhaA80 with the ionic liquids. The findings provide coherent evidence that ionic liquids strengthen both the secondary and tertiary protein structure due to extensive hydrogen bond interactions

    Substituent Effect on Porphyrin Film-Gas Interaction by Optical Waveguide: Spectrum Analysis and Molecular Dynamic Simulation

    Get PDF
    Substituent effect on optical gas sensing performance in porphyrin-based optical waveguide detection system was studied by molecular dynamics simulation (MDS), absorption/emission spectrum analysis, and optical waveguide (OWG) detection. The affinities of porphyrin with seven types of substituents (–H, –OH, –tBu, –COOH, –NH2, –OCH3, –SO3−) on para position of meso-phenyl porphyrin toward gas molecules in adsorption process were studied in different size of boxes with the same pressure and concentration. Analyte gases (CO2, H2S, HCl, NO2) were exposed to porphyrin film in absorption spectrophotometer, and in OWG with evanescent field excited by a guiding laser light with 670 nm wavelength. The extent of interaction between host molecule and the guest analytes was analyzed by the number of gas molecules in vicinity of 0.3 nm around substituents of porphyrin molecules. Optical waveguide results reveal that sulfonate porphyrin is mostly responsive to hydrochloride, hydrosulfide gas and nitrogen dioxide gases with strong response intensity. Molecular dynamics and spectral analysis provide objective information about the molecular state and sensing properties. Molecular rearrangements induced by gas exposure was studied by spectral analysis and surface morphology before and after gas exposure taking hydrosulfide gas as an example. Film-gas interaction mechanism was discussed in terms of each gas and substituent group characters

    Local and cooperative structural transitions of double-stranded DNA in choline-based deep eutectic solvents

    Get PDF
    The possibility of using deep eutectic solvents (DESs) as co-solvents for stabilizing and preserving the native structure of DNA provides an attractive opportunity in the field of DNA biotechnology. The rationale of this work is a systematic investigation of the effect of hydrated choline-based DES on the structural stability of a 30-basepair double-stranded DNA model via a combination of spectroscopic experiments and MD simulations. UV absorption and CD experiments provide evidence of a significant contribution of DESs to the stabilization of the double-stranded canonical (B-form) DNA structure. Multi-wavelength synchrotron UV Resonance Raman (UVRR) measurements indicate that the hydration shell of adenine-thymine pairs is strongly perturbed in the presence of DESs and that the preferential interaction between H-bond sites of guanine residues and DESs is significantly involved in the stabilization of the dsDNA. Finally, MD calculations show that the minor groove of DNA is significantly selective for the choline part of the investigated DESs compared to the major groove. This finding is likely to have a significant impact not only in terms of thermal stability but also in the modulation of ligand-DNA interactions

    Propensity of formate, acetate, benzoate, and phenolate for the aqueous solution/vapor interface: Surface tension measurements and molecular dynamics simulations,

    Get PDF
    The properties of aliph. and arom. carboxylates and phenolate-mimicking functional groups of humic acid are discussed with regard to their behavior in aq. solns. close to the surface. Both surface tension measurements and MD simulations confirm that Na formate behaves in accord with the classical theory of surfaces of electrolytes, whereas NaOAc and, much more pronounced, NaOBz and Na phenolate show a more hydrotropic behavior with surface active anions. Further to the surface tension data, the MD results suggest that these hydrotropes are highly oriented at the soln.-vapor interface

    Propensity of citric, maleic, oxalic and succnic acids for the acquous solution- vapour interface : Surface tension measurment and molecular dynamics simulations

    Get PDF
    Behaviour of oxalic, citric, succinic, and maleic acids at the air/water interface is characterized and quantified by surface tension measurements in a broad concentration range and molecular dynamics simulations in slab geometry employing a polarizable force field. The relative order of surface propensities of these atmospherically relevant acids is established in this study with results being also in a very good agreement with previous measurements

    The C-terminal basic residues contribute to the chemical- and voltage-dependent activation of TRPA1

    Get PDF
    The ankyrin transient receptor potential channel TRPA1 is a non-selective cationic channel that is expressed by sensory neurons, where it can be activated by pungent chemicals, such as AITC (allyl isothiocyanate), cinnamon or allicin, by deep cooling (<18 °C) or highly depolarizing voltages (>+100 mV). From the cytoplasmic side, this channel can be regulated by negatively charged ligands such as phosphoinositides or inorganic polyphosphates, most likely through an interaction with as yet unidentified positively charged domain(s). In the present study, we mutated 27 basic residues along the C-terminal tail of TRPA1, trying to explore their role in AITC- and voltage-dependent gating. In the proximal part of the C-terminus, the function-affecting mutations were at Lys969, Arg975, Lys988 and Lys989. A second significant region was found in the predicted helix, centred around Lys1048 and Lys1052, in which single alanine mutations completely abolished AITC- and voltage-dependent activation. In the distal portion of the C-terminus, the charge neutralizations K1092A and R1099A reduced the AITC sensitivity, and, in the latter mutant, increased the voltage-induced steady-state responses. Taken together, our findings identify basic residues in the C-terminus that are strongly involved in TRPA1 voltage and chemical sensitivity, and some of them may represent possible interaction sites for negatively charged molecules that are generally considered to modulate TRPA1
    corecore