451 research outputs found

    Kinematic segregation of nearby disk stars from the Hipparcos database

    Full text link
    To better understand our Galaxy, we investigate the pertinency of describing the sys tem of nearby disk stars in terms of a two-components Schwarzschild velocity distributio n.Using the proper motion and parallax information of Hipparcos database, we determine t he parameters characterizing the local stellar velocity field of a sample of 22000 disk stars. The sample we use is essentially the same as the one described by the criteria ad opted to study the LSR and the stream motion of the nearby stellar populationComment: 19 page

    Une sonde photométrique pour l'analyse in situ : Principe, méthode, premiers essais

    Get PDF
    Certains composés dissous ne sont pas stables une fois prélevés hors de leur milieu. Pour éviter que l'information ne se perde entre le prélèvement et l'analyse, il est nécessaire d'effectuer cette dernière in situ. La solution que nous présentons, consiste à développer une réaction colorimétrique en profondeur; la cellule photométrique est immergée et reliée à un spectrophotomètre en surface, par 2 fibres optiques (fig. 1a, b, c). Cependant, lors d'un essai préliminaire, nous avons observé que, dans le circuit de mélange de la sonde, les proportions entre réactif et échantillon ne sont pas constantes. Ces variations de débits sont corrigées par des mesures à deux longueurs d'onde (λ1 et λ2)* et par l'adjonction d'un colorant auxiliaire ne perturbant pas la réaction calorimétrique. L'étalonnage se fait directement sur la cellule photométrique : dans un diagramme Absorbance à λ1 = f (Absorbance à λ2) (fig. 2), on place une droite d'étalonnage et des points particuliers. Les règles de mélange sont vérifiées indépendamment de toute réaction chimique avec différentes solutions d'hélianthine dans un tampon à pH 7 et du rouge de chlorophénol à la place du réactif (fig. 4 et 5). En outre nous utilisons le rouge de chlorophénol, jaune sous forme acide, comme colorant auxiliaire pour le dosage du fer total dans un premier essai in situ (lac d'Aydat, Puy de Dôme, France). Les résultats sont comparés à ceux obtenus par prélèvements et analyses au laboratoire (fig. 6). L'accord est satisfaisant. L'incorporation au système présenté, d'une pompe osmotique devrait permettre, avec cet appareillage simple, des mesures pendant plusieurs mois sans intervention.Various dissolved compounds are mot stables in surface conditions. We realized a prototype to collect chemical data related to redox sensitive species without any contact with the atmospheric oxygen.The principle of this probe for in situ measurements is to produce colorimetric reaction in depth. A photometric cell and a horizontal coiled glass tube for fluid mixing are immersed and connected with two optic fibers to a spectrophotometer on boat (fig. la, b, c). Reagent is injected continuously from surface and sample is sucked up with a peristaltic pump through a tubular filter.Every species which can be analysed by colorimetric method should be determined, in deep river or in lake, with this simple equipment.Nevertheless, during preliminary trial, we detected a lack of reproducibility in the mixing ratio of the sample with the complexing agent. The problem is solved by adding an auxiliary dye with reagent and measuring optical densities at two different wavelengths (λ1 and λ2). In the system, with a the sample proportion, absorbance A at λ is expressed as :A=ɛe∙l∙Ce∙α+ɛr∙l∙Cr∙(1-α)We suggest to calibrate directly the cell of the probe and work in a calibration graph. It is built with first, marking on an A1λ1=f(A2λ2)graph (fig. 2), the « pivot » point (P) (when α= 0), second, plotting the « calibration curve »A2=A1 (ɛe2/ɛe1)(when α= 1), third, plotting the different S1 (A1i, A2i) measured from standards. Therefore, if sample signal Re at two wavelengths is plotted in this graph, by joining P and Re, the straight line intersects with calibration curve at C. On this curve, interpolation of C between two standards determine the concentration of the analyte.Experimental verification of the mixing rule has been clone independently of chemical reaction, with different heliantine solutions in pH 7 buffer as samples and chlorophenol red as reagent, bath in laboratory and at 15 meters depth (Beffes lake, France) (fig. 4 and 5).Furthermore, chlorophenol red, previously tested, is used as auxiliary dye for total iron measurement, in Aydat lake (Puy de Dôme, France) for a first in situ trial.Results are compared to those got from oceanographic bottle sampling and laboratory analysis (fig. 6). Data from the probe are in good agreement with data from the laboratory method.Next development of this chemical sensor will consist in adding to the system an osmotic pump which should allow measurements without intervention during several months

    Reassessing the origin of Triton

    Full text link
    Agnor & Hamilton (2006) demonstrated that the disruption of a binary was an effective mechanism to capture Triton. The subsequent evolution of Triton's post-capture orbit could have proceeded through gravitational tides. The study by Agnor & Hamilton (2006) is repeated in the framework of the Nice model to determine the post-capture orbit of Triton. After capture it is then subjected to tidal evolution. The perturbations from the Sun and the figure of Neptune are included. The perturbations from the Sun acting on Triton cause it to spend a long time in its high-eccentricity phase, usually of the order of 10 Myr, while the typical time to circularise to its current orbit is some 200 Myr. The current orbit of Triton is consistent with an origin through binary capture and tidal evolution, even though the model prefers Triton to be closer to Neptune than it is today. The probability of capturing Triton in this manner is approximately 0.7%. Since the capture of Triton was at most a 50% event -- since only Neptune has one, but Uranus does not -- we deduce that in the primordial trans-Neptunian disc there were 100 binaries with at least one Triton-sized member. Morbidelli et al. (2009) concludes there were some 1000 Triton-sized bodies in the trans-Neptunian proto-planetary disc, so the primordial binary fraction with at least one Triton-sized member is 10%. This value is consistent with theoretical predictions, but at the low end. If Triton was captured at the same time as Neptune's irregular satellites, the far majority of these, including Nereid, would be lost. This suggests either that Triton was captured on an orbit with a small semi-major axis a < 50 R_N (a rare event), or that it was captured before the dynamical instability of the Nice model, or that some other mechanism was at play. The issue of keeping the irregular satellites remains unresolved.Comment: Accepted in Icarus 201

    The first accurate parallax distance to a black hole

    Get PDF
    Using astrometric VLBI observations, we have determined the parallax of the black hole X-ray binary V404 Cyg to be 0.418 +/- 0.024 milliarcseconds, corresponding to a distance of 2.39 +/- 0.14 kpc, significantly lower than the previously accepted value. This model-independent estimate is the most accurate distance to a Galactic stellar-mass black hole measured to date. With this new distance, we confirm that the source was not super-Eddington during its 1989 outburst. The fitted distance and proper motion imply that the black hole in this system likely formed in a supernova, with the peculiar velocity being consistent with a recoil (Blaauw) kick. The size of the quiescent jets inferred to exist in this system is less than 1.4 AU at 22 GHz. Astrometric observations of a larger sample of such systems would provide useful insights into the formation and properties of accreting stellar-mass black holes.Comment: Accepted for publication in ApJ Letters. 6 pages, 2 figure

    Modeling Multi-Wavelength Stellar Astrometry. I. SIM Lite Observations of Interacting Binaries

    Get PDF
    Interacting binaries consist of a secondary star which fills or is very close to filling its Roche lobe, resulting in accretion onto the primary star, which is often, but not always, a compact object. In many cases, the primary star, secondary star, and the accretion disk can all be significant sources of luminosity. SIM Lite will only measure the photocenter of an astrometric target, and thus determining the true astrometric orbits of such systems will be difficult. We have modified the Eclipsing Light Curve code (Orosz & Hauschildt 2000) to allow us to model the flux-weighted reflex motions of interacting binaries, in a code we call REFLUX. This code gives us sufficient flexibility to investigate nearly every configuration of interacting binary. We find that SIM Lite will be able to determine astrometric orbits for all sufficiently bright interacting binaries where the primary or secondary star dominates the luminosity. For systems where there are multiple components that comprise the spectrum in the optical bandpass accessible to SIM Lite, we find it is possible to obtain absolute masses for both components, although multi-wavelength photometry will be required to disentangle the multiple components. In all cases, SIM Lite will at least yield accurate inclinations, and provide valuable information that will allow us to begin to understand the complex evolution of mass-transferring binaries. It is critical that SIM Lite maintains a multi-wavelength capability to allow for the proper deconvolution of the astrometric orbits in multi-component systems.Comment: 12 pages, 6 figures, 6 tables. Accepted for publication in the Astrophysical Journa

    GAIA: Composition, Formation and Evolution of the Galaxy

    Get PDF
    The GAIA astrometric mission has recently been approved as one of the next two `cornerstones' of ESA's science programme, with a launch date target of not later than mid-2012. GAIA will provide positional and radial velocity measurements with the accuracies needed to produce a stereoscopic and kinematic census of about one billion stars throughout our Galaxy (and into the Local Group), amounting to about 1 per cent of the Galactic stellar population. GAIA's main scientific goal is to clarify the origin and history of our Galaxy, from a quantitative census of the stellar populations. It will advance questions such as when the stars in our Galaxy formed, when and how it was assembled, and its distribution of dark matter. The survey aims for completeness to V=20 mag, with accuracies of about 10 microarcsec at 15 mag. Combined with astrophysical information for each star, provided by on-board multi-colour photometry and (limited) spectroscopy, these data will have the precision necessary to quantify the early formation, and subsequent dynamical, chemical and star formation evolution of our Galaxy. Additional products include detection and orbital classification of tens of thousands of extra-Solar planetary systems, and a comprehensive survey of some 10^5-10^6 minor bodies in our Solar System, through galaxies in the nearby Universe, to some 500,000 distant quasars. It will provide a number of stringent new tests of general relativity and cosmology. The complete satellite system was evaluated as part of a detailed technology study, including a detailed payload design, corresponding accuracy assesments, and results from a prototype data reduction development.Comment: Accepted by A&A: 25 pages, 8 figure

    WIMP Annual Modulation with Opposite Phase in Late-Infall Halo Models

    Full text link
    We show that in the late-infall model of our galactic halo by P. Sikivie the expected phase of the annual modulation of a WIMP halo signal in direct detection experiments is opposite to the one usually expected. If a non-virialized halo component due to the infall of (collisionless) dark matter particles cannot be rejected, an annual modulation in a dark matter signal should be looked for by experimenters without fixing the phase a-priori. Moreover, WIMP streams coming to Earth from directions above and below the galactic plane should be expected, with a characteristic pattern of arrival directions.Comment: 15 pages, 5 figure

    Determination of rotation periods in solar-like stars with irregular sampling: the Gaia case

    Full text link
    We present a study on the determination of rotation periods (P) of solar-like stars from the photometric irregular time-sampling of the ESA Gaia mission, currently scheduled for launch in 2013, taking into account its dependence on ecliptic coordinates. We examine the case of solar-twins as well as thousands of synthetic time-series of solar-like stars rotating faster than the Sun. In the case of solar twins we assume that the Gaia unfiltered photometric passband G will mimic the variability of the total solar irradiance (TSI) as measured by the VIRGO experiment. For stars rotating faster than the Sun, light-curves are simulated using synthetic spectra for the quiet atmosphere, the spots, and the faculae combined by applying semi-empirical relationships relating the level of photospheric magnetic activity to the stellar rotation and the Gaia instrumental response. The capabilities of the Deeming, Lomb-Scargle, and Phase Dispersion Minimisation methods in recovering the correct rotation periods are tested and compared. The false alarm probability (FAP) is computed using Monte Carlo simulations and compared with analytical formulae. The Gaia scanning law makes the rate of correct detection of rotation periods strongly dependent on the ecliptic latitude (beta). We find that for P ~ 1 d, the rate of correct detection increases with ecliptic latitude from 20-30 per cent at beta ~ 0{\deg} to a peak of 70 per cent at beta=45{\deg}, then it abruptly falls below 10 per cent at beta > 45{\deg}. For P > 5 d, the rate of correct detection is quite low and for solar twins is only 5 per cent on average.Comment: 12 pages, 18 figures, accepted by MNRA

    Building the cosmic distance scale: from Hipparcos to Gaia

    Get PDF
    Hipparcos, the first ever experiment of global astrometry, was launched by ESA in 1989 and its results published in 1997 (Perryman et al., Astron. Astrophys. 323, L49, 1997; Perryman & ESA (eds), The Hipparcos and Tycho catalogues, ESA SP-1200, 1997). A new reduction was later performed using an improved satellite attitude reconstruction leading to an improved accuracy for stars brighter than 9th magnitude (van Leeuwen & Fantino, Astron. Astrophys. 439, 791, 2005; van Leeuwen, Astron. Astrophys. 474, 653, 2007). The Hipparcos Catalogue provided an extended dataset of very accurate astrometric data (positions, trigonometric parallaxes and proper motions), enlarging by two orders of magnitude the quantity and quality of distance determinations and luminosity calibrations. The availability of more than 20000 stars with a trigonometric parallax known to better than 10% opened the way to a drastic revision of our 3-D knowledge of the solar neighbourhood and to a renewal of the calibration of many distance indicators and age estimations. The prospects opened by Gaia, the next ESA cornerstone, planned for launch in June 2013 (Perryman et al., Astron. Astrophys. 369, 339, 2001), are still much more dramatic: a billion objects with systematic and quasi simultaneous astrometric, spectrophotometric and spectroscopic observations, about 150 million stars with expected distances to better than 10%, all over the Galaxy. All stellar distance indicators, in very large numbers, will be directly measured, providing a direct calibration of their luminosity and making possible detailed studies of the impacts of various effects linked to chemical element abundances, age or cluster membership. With the help of simulations of the data expected from Gaia, obtained from the mission simulator developed by DPAC, we will illustrate what Gaia can provide with some selected examples.Comment: 16 pages, 16 figures, Conference "The Fundamental Cosmic Distance scale: State of the Art and the Gaia perspective, 3-6 May 2011, INAF, Osservatorio Astronomico di Capodimonte, Naples. Accepted for publication in Astrophysics & Space Scienc
    • …
    corecore