Interacting binaries consist of a secondary star which fills or is very close
to filling its Roche lobe, resulting in accretion onto the primary star, which
is often, but not always, a compact object. In many cases, the primary star,
secondary star, and the accretion disk can all be significant sources of
luminosity. SIM Lite will only measure the photocenter of an astrometric
target, and thus determining the true astrometric orbits of such systems will
be difficult. We have modified the Eclipsing Light Curve code (Orosz &
Hauschildt 2000) to allow us to model the flux-weighted reflex motions of
interacting binaries, in a code we call REFLUX. This code gives us sufficient
flexibility to investigate nearly every configuration of interacting binary. We
find that SIM Lite will be able to determine astrometric orbits for all
sufficiently bright interacting binaries where the primary or secondary star
dominates the luminosity. For systems where there are multiple components that
comprise the spectrum in the optical bandpass accessible to SIM Lite, we find
it is possible to obtain absolute masses for both components, although
multi-wavelength photometry will be required to disentangle the multiple
components. In all cases, SIM Lite will at least yield accurate inclinations,
and provide valuable information that will allow us to begin to understand the
complex evolution of mass-transferring binaries. It is critical that SIM Lite
maintains a multi-wavelength capability to allow for the proper deconvolution
of the astrometric orbits in multi-component systems.Comment: 12 pages, 6 figures, 6 tables. Accepted for publication in the
Astrophysical Journa