45 research outputs found

    In vitro model for the study of the role of the mesopontine region in rapid eye movement (REM) sleep and wakefulness

    Get PDF
    Esteban Pino: Laboratorio de Neurofisiología Celular y Sináptica. Dpto. de Fisiología, Facultad de Medicina. Universidad de la República.-- Héctor Kunizawa: Laboratorio de Neurofisiología Celular y Sináptica. Dpto. de Fisiología, Facultad de Medicina. Universidad de la República.-- Jack Yamuy: A Greater Los Angeles Healthcare System; UCLA School of Medicine, Los Angeles, USA.-- Michel Borde: Laboratorio de Neurofisiología Celular y Sináptica. Dpto. de Fisiología, Facultad de Medicina. Universidad de la República.-- Contacto: Michel Borde. E-mail: [email protected] estudio de las estrategias neurales para la organización del comportamiento en vertebrados constituye un desafío mayor para la Neurociencia. El avance del conocimiento en este campo depende de manera crítica de la utilización de modelos experimentales adecuados que admitan múltiples niveles de análisis (p.ej: comportamental, circuital, celular, sináptico, molecular) y abordajes multitécnicos. Nos propusimos analizar in vitro una red neural de la unión mesopontina del tronco encefálico crítica-mente implicada en el control del sueño de movimientos oculares rápidos (S-REM). Pese al cúmulo de evidencias que apoyan el papel desempeñado por esta red en relación al S-REM, los mecanismos celu-lares y sinápticos que subyacen a este control son poco conocidos y continúan siendo objeto de intensa investigación. Para avanzar en el conocimiento de estos mecanismos, se llevó a cabo la caracterización morfológica y funcional de una rodaja de tronco encefálico de la rata, en la que las estructuras críticas para el control del S-REM, i.e.: núcleos tegmentales laterodorsal y pedúnculopontino, y su proyección al núcleo reticular pontis oralis (PnO), están presentes y son operativas. La inclusión del núcleo mo-tor del trigémino en la rodaja permitió detectar cambios de la excitabilidad de las motoneuronas ante manipulaciones farmacológicas del PnO, representativos de los cambios del tono muscular asociados a maniobras similares realizadas in vivo. La utilización de este modelo in vitro de S-REM, permitirá aportar a la dilucidación de las estrategias neurales que operan en niveles intermedios de organización del SN en mamíferos para la generación y regulación de un estado comportamental.The study of the neural basis of behavior is a major challenge in Neuroscience. Advancing our knowledge in this field depends, critically, on the use of experimental paradigms that provide multiple levels of analysis, as well as powerful techniques. We have selected, as a model of a neural plan that organizes a complex behavior, a neural network located in the mesopontine junction. This region is thought to be both necessary and sufficient for the generation of rapid eye movement (REM) sleep, although the cellular and synaptic mechanisms involved in the control of this behavioral state at the mesopontine level are still under debate and remain poorly understood. As part of a long term effort to gain insight into these mechanisms, we carried out the morphological and functional characterization of a slice preparation of rat brainstem and we demonstrate that critical structures for the control of REM sleep - the laterodorsal and pedunculopontine tegmental nuclei and their projection to the oral part of the pontine reticular nucleus (PnO) - are present and are operational. The presence of the tri-geminal motor nucleus in the slice sought to include in the experimental model a structure capable of expressing changes of the excitability of the motorneurons caused by pharmacological manipulations of the PnO, representative of changes of muscle tone associated with similar maneuvers performed in vivo. The use of this in vitro model of REM sleep will provide critical information to elucidate neural strategies that operate at intermediate levels of central nervous system organization in mammals to control behavioral states.O estudo de estratégias neurais para a organização do comportamento em vertebrados constitui um desafio maior para a neurociencia. O avanço do conhecimento nessa área depende criticamente da utilização de modelos experimentais adequados que suportem múltiplos níveis de análise (por exemplo: comportamental, circuital, celular, sináptico e molecular) e abordagens por múltiplas técnicas. Decidiu-se analisar in vitro uma rede neural da união mesopontina do tronco encefálico criticamente envolvida no controle do sono de movimentos oculares rápidos (S-REM). Apesar da riqueza de provas que sustentam o papel desta rede em relação ao S-REM, os mecanismos celulares e sinápticos subja-centes a este controle são pouco conhecidos e permanecem sob intensa investigação. Para avançar no conhecimento desses mecanismos, caracterizou-se morfológica e funcionalmente uma fatia de tronco encefálico de rato, na qual as estruturas críticas para o controle do S-REM, i.e.: núcleos tegmentais laterodorsal e pedunculopontino, e sua projeção para o núcleo reticular pontis oralis (PnO) estão pre-sentes e operantes. A inclusão do núcleo motor do trigêmeo na fatia permitiu detectar mudanças da ex-citabilidade das motoneuronas provocadas por manipulações farmacológicas do PnO, representativas das alterações do tônus muscular associados com operações semelhantes quando realizados in vivo. A utlização deste modelo in vitro de S-REM permitirá contribuir para a elucidação de estratégias neurais que operam em níveis intermedios de organização do SN de mamíferos para a geração e regulação de um estado comportamental

    The SARS algorithm: detrending CoRoT light curves with Sysrem using simultaneous external parameters

    Full text link
    Surveys for exoplanetary transits are usually limited not by photon noise but rather by the amount of red noise in their data. In particular, although the CoRoT spacebased survey data are being carefully scrutinized, significant new sources of systematic noises are still being discovered. Recently, a magnitude-dependant systematic effect was discovered in the CoRoT data by Mazeh & Guterman et al. and a phenomenological correction was proposed. Here we tie the observed effect a particular type of effect, and in the process generalize the popular Sysrem algorithm to include external parameters in a simultaneous solution with the unknown effects. We show that a post-processing scheme based on this algorithm performs well and indeed allows for the detection of new transit-like signals that were not previously detected.Comment: MNRAS accepted. 5 pages, 3 figure

    Incidence of reversible amenorrhea in women with breast cancer undergoing adjuvant anthracycline-based chemotherapy with or without docetaxel

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine the incidence of reversible amenorrhea in women with breast cancer undergoing adjuvant anthracycline-based chemotherapy with or without docetaxel.</p> <p>Methods</p> <p>We studied the incidence and duration of amenorrhea induced by two chemotherapy regimens: (i) 6 cycles of 5-fluorouracil 500 mg/m<sup>2</sup>, epirubicin 100 mg/m<sup>2 </sup>and cyclophosphamide 500 mg/m<sup>2 </sup>on day 1 every 3 weeks (6FEC) and (ii) 3 cycles of FEC 100 followed by 3 cycles of docetaxel 100 mg/m<sup>2 </sup>on day 1 every 3 weeks (3FEC/3D). Reversible amenorrhea was defined as recovery of regular menses and, where available (101 patients), premenopausal hormone values (luteinizing hormone (LH), follicle-stimulating hormone (FSH) and estradiol) in the year following the end of chemotherapy.</p> <p>Results</p> <p>One hundred and fifty-four premenopausal patients were included: 84 treated with 6FEC and 70 with 3FEC/3D. The median age was 43.5 years (range: 28–58) in the 6FEC arm and 44 years (range: 29–53) in the 3FEC/3D arm. Seventy-eight percent of patients were treated in the context of the PACS 01 trial. The incidence of chemotherapy-induced amenorrhea at the end of chemotherapy was similar in the two groups: 93 % in the 6FEC arm and 92.8 % in the 3FEC/3D arm. However, in the year following the end of chemotherapy, more patients recovered menses in the 3FEC/3D arm than in the 6FEC arm: 35.5 % versus 23.7 % (p = 0.019). Among the 101 patients for whom hormone values were available, 43 % in the 3FEC/3D arm and 29 % in the 6FEC arm showed premenopausal levels one year after the end of chemotherapy (p < 0.01). In the 3FEC/3D group, there was a statistically significant advantage in disease-free survival (DFS) for patients who were still amenorrheic after one year, compared to patients who had recovered regular menses (p = 0.0017).</p> <p>Conclusion</p> <p>Our study suggests that 3FEC/3D treatment induces more reversible amenorrhea than 6FEC. The clinical relevance of these findings needs to be investigated further.</p

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Plasticidad inducida por activacion postsinaptica en celulas piramidales de ca1 del hipocampo de la rata Estudio in vitro

    No full text
    Centro de Informacion y Documentacion Cientifica (CINDOC). C/Joaquin Costa, 22. 28002 Madrid. SPAIN / CINDOC - Centro de Informaciòn y Documentaciòn CientìficaSIGLEESSpai

    Jeux d'attracteurs et création

    No full text
    This paper will broach key factors in the evolution of modes of representation associated with different media. What is the impact of each on creativity ? Have all the related technical issues been addressed ? or for that matter, have they all been identified ? What fundamental forces direct the course of artistic expression ? Such questions are the subject of many debates and conferences. We shall turn to them with a special eye to those secured in public opinion and those, less known, which have yet to guarantee a platform for artistic expression.Une approche des points d'attraction de l'évolution des modes de représentation des médias. Comment ceux-ci influent-ils sur la création ? Tous les écueils techniques ont-ils été levés ? Sont-ils même seulement identifiés ? Quelles tendances de fond attirent l'expression et vers quoi ? Toutes ces questions font l'objet de nombreuses présentations et débats. Elles sont ici revisitées avec une mise en perspective pour déceler les questions réputées stabilisées et celles, pas forcément connues, qui posent réellement problème pour donner des garanties à l'expression artistique.Borde Jean-Michel. Jeux d'attracteurs et création. In: Cahier Louis-Lumière n°3, automne 2005. Territoires audiovisuels. Errances, itinérances et frontières. pp. 66-75

    Plasticidad inducida por activación postsináptica en células piramidales de ca1 del hipocampo de la rata: estudio in vitro

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Morfología. Fecha de lectura: 20-4-94
    corecore