156 research outputs found

    Tragic Creation: Hope for the Future—Moltmann\u27s Creative (Mis)Reading of Hegel\u27s Philosophy

    Get PDF
    Christian theology, in its many and varied forms, and to the detriment of both the church and the world, is often built upon a shaky epistemological foundation. In this dissertation, I describe this shaky foundation by the term \u27insular universalism\u27. The oxymoronic nature of the term is both intentional and telling. A theology which strives for, or unwittingly arrives at, a position which is here being called \u27insular universalism\u27 achieves neither while rejecting or misunderstanding the complexity of both. When considered theologically, insular universalism could be simplistically described as the idea that one cultural expression of the religion is exclusive for expressing the fullness of the gospel. In order to show the unsure theological footing of \u27insular universalism\u27, and in order to point to what I believe to be a better way forward, I turn to the theology of Jürgen Moltmann. Although Moltmann\u27s theology has been influential and therefore carefully dissected and frequently interpreted, there also exists a deeply Hegelian background that has not been carefully examined. Looking at questions of ontology and epistemology, as well as notions of system, the Absolute, and the possibility of beginnings and endings, this dissertation demonstrates a deeply Hegelian line of thought running throughout Moltmann\u27s theology. Yet, it is not the case that Moltmann is thoroughly and unabashedly \u27Hegelian\u27, but rather that Moltmann takes particular Hegelian themes, as those noted above, and subtly shifts them, perhaps riffs on them, to further his theological project. After having described these Hegelian themes, and pointing to the variety of ways in which they are influential on Moltmann\u27s theological journeys, this dissertation turns to its own practice of constructive theology. Just as Moltmann riffs on Hegel, this constructive practice is a riffing on Moltmann - not thoroughly apologetic, but rooted in the tradition. It is argued that from Moltmann can be developed a theory of \u27tragic creation\u27, and from this theory Christian theology can balance the quests for both redemption and understanding. In finding this balance, it is argued, \u27insular universalism\u27 can be overcome with theological practices which are rooted in both epistemic humility and the need to address explicitly the socio-political realities of the world which cry out for redemption

    Design and optimal control of a multistable, cooperative microactuator

    Get PDF
    In order to satisfy the demand for the high functionality of future microdevices, research on new concepts for multistable microactuators with enlarged working ranges becomes increasingly important. A challenge for the design of such actuators lies in overcoming the mechanical connections of the moved object, which limit its deflection angle or traveling distance. Although numerous approaches have already been proposed to solve this issue, only a few have considered multiple asymptotically stable resting positions. In order to fill this gap, we present a microactuator that allows large vertical displacements of a freely moving permanent magnet on a millimeter-scale. Multiple stable equilibria are generated at predefined positions by superimposing permanent magnetic fields, thus removing the need for constant energy input. In order to achieve fast object movements with low solenoid currents, we apply a combination of piezoelectric and electromagnetic actuation, which work as cooperative manipulators. Optimal trajectory planning and flatness-based control ensure time- and energy-efficient motion while being able to compensate for disturbances. We demonstrate the advantage of the proposed actuator in terms of its expandability and show the effectiveness of the controller with regard to the initial state uncertainty

    ESTIMATING VARIANCE FUNCTIONS FOR WEIGHTED LINEAR REGRESSION

    Get PDF
    For linear models with heterogeneous error structure, four variance function models are examined for predicting the error structure in two loblolly pine data sets and one white oak data set. An index of fit and a simulation study were used to determine which models were best. The size of coefficients for linear and higher order terms varied drastically across different data sets, thus it is not desirable to recommend a general model containing both linear and higher order terms. The unspecified exponent model σ2vi = σ2(Di2 Hi)k 1 is recommended for all data sets considered. The k1 values ranged from 1.8 to 2.1. We recommend k1 = 2.0 for simplicity

    The Lyman-alpha forest at redshifts 0.1 -- 1.6: good agreement between a large hydrodynamic simulation and HST spectra

    Full text link
    We give a comprehensive statistical description of the Lyman-alpha absorption from the intergalactic medium in a hydrodynamic simulation at redshifts 0.1-1.6, the range of redshifts covered by HST spectra of QSOs. We use the ENZO code to make a 76 comoving Mpc cube simulation using 75 kpc cells, for a Hubble constant of 71 km/s/Mpc. The best prior work, by \citet{dave99},used an SPH simulation in a 15.6 Mpc box with an effective resolution of 245 kpc and slightly different cosmological parameters. At redshifts z=2 this simulation is different from data. \citet{tytler07b} found that the simulated spectra at z=2 have too little power on large scales, Lyman-alpha lines are too wide, there is a lack high column density lines, and there is a lack of pixels with low flux. Here we present statistics at z<1.6, including the flux distribution, the mean flux, the effective opacity, and the power and correlation of the flux. We also give statistics of the lyman alpha lines including the line width distribution, the column density distribution, the number of lines per unit equivalent width and redshift, and the correlation between the line width and column density. We find that the mean amount of absorption in the simulated spectra changes smoothly with redshift with DA(z)=0.01(1+z)^{2.25}. Both the trend and absolute values are close to measurements of HST spectra by \citet{kirkman07a}. The column density and line width distributions are also close to those measured from HST spectra by \citet{janknecht06a}, except for the mode of the line width distribution which is smaller in the HST spectra. Although some differences that we saw at z=2 are too subtle to be seen in existing HST spectra, overall, the simulation gives an good description of HST spectra at 0.1<z<1.6

    Galaxy Group at z=0.3 Associated with the Damped Lyman Alpha System Towards Quasar Q1127-145

    Full text link
    (Abridged) We performed a spectroscopic galaxy survey, complete to m<20.3 (L_B>0.15L_B* at z=0.3), within 100x100" of the quasar Q1127-145 (z=1.18). The VLT/UVES quasar spectrum contains three z<0.33 MgII absorption systems. We obtained eight new galaxy redshifts, adding to the four previously known, and galaxy star formation rates and metallicities were computed where possible. A strong MgII system [W_r(2796)=1.8A], which is a known DLA, had three previously identified galaxies; we found two additional galaxies associated with this system. These five galaxies form a group with diverse properties, such as a luminosity range of 0.04<L_B<0.63L_B*, an impact parameter range of 17<D<241kpc and velocity dispersion of 115km/s. The DLA group galaxy redshifts span beyond the 350km/s velocity spread of the metallic absorption lines of the DLA itself. The two brightest group galaxies have SFRs of a few Msun/yr and should not have strong winds. We have sufficient spectroscopic information to directly compare three of the five group galaxies' (emission-line) metallicities with the DLA (absorption) metallicity: the DLA metallicity is 1/10th solar, substantially lower than the three galaxies' which range between less than 1/2 solar to solar metallicity. HST/WFPC-2 imaging shows perturbed morphologies for the three brightest group galaxies, with tidal tails extending 25kpc. We favor a scenario where the DLA absorption originates from tidal debris in the group environment. Another absorber exhibits weak MgII absorption [W_r(2796)=0.03A] and had a previously identified galaxy at a similar redshift. We have identified a second galaxy associated with this system. Both galaxies have solar metallicities and unperturbed morphologies. The SFR of one galaxy is much lower than expected for strong outflows. Finally, we have identified five galaxies at large impact parameters with no associated MgII absorption.Comment: 15 pages, 7 figures, 5 tables. Accepted for publication in MNRAS

    Infiltration from the pedon to global grid scales: an overview and outlook for land surface modelling

    Get PDF
    Infiltration in soils is a key process that partitions precipitation at the land surface in surface runoff and water that enters the soil profile. We reviewed the basic principles of water infiltration in soils and we analyzed approaches commonly used in Land Surface Models (LSMs) to quantify infiltration as well as its numerical implementation and sensitivity to model parameters. We reviewed methods to upscale infiltration from the point to the field, hill slope, and grid cell scale of LSMs. Despite the progress that has been made, upscaling of local scale infiltration processes to the grid scale used in LSMs is still far from being treated rigorously. We still lack a consistent theoretical framework to predict effective fluxes and parameters that control infiltration in LSMs. Our analysis shows, that there is a large variety in approaches used to estimate soil hydraulic properties. Novel, highly resolved soil information at higher resolutions than the grid scale of LSMs may help in better quantifying subgrid variability of key infiltration parameters. Currently, only a few land surface models consider the impact of soil structure on soil hydraulic properties. Finally, we identified several processes not yet considered in LSMs that are known to strongly influence infiltration. Especially, the impact of soil structure on infiltration requires further research. In order to tackle the above challenges and integrate current knowledge on soil processes affecting infiltration processes on land surface models, we advocate a stronger exchange and scientific interaction between the soil and the land surface modelling communities

    Single-cell profiling of alveolar rhabdomyosarcoma reveals RAS pathway inhibitors as cell-fate hijackers with therapeutic relevance

    Get PDF
    Rhabdomyosarcoma (RMS) is a group of pediatric cancers with features of developing skeletal muscle. The cellular hierarchy and mechanisms leading to developmental arrest remain elusive. Here, we combined single-cell RNA sequencing, mass cytometry, and high-content imaging to resolve intratumoral heterogeneity of patient-derived primary RMS cultures. We show that the aggressive alveolar RMS (aRMS) subtype contains plastic muscle stem-like cells and cycling progenitors that drive tumor growth, and a subpopulation of differentiated cells that lost its proliferative potential and correlates with better outcomes. While chemotherapy eliminates cycling progenitors, it enriches aRMS for muscle stem-like cells. We screened for drugs hijacking aRMS toward clinically favorable subpopulations and identified a combination of RAF and MEK inhibitors that potently induces myogenic differentiation and inhibits tumor growth. Overall, our work provides insights into the developmental states underlying aRMS aggressiveness, chemoresistance, and progression and identifies the RAS pathway as a promising therapeutic target

    The Aqua-Planet Experiment (APE): CONTROL SST Simulation

    Get PDF
    Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE.Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies.The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed.The aqua-planet configuration is intended as one component of an experimental hierarchy used to evaluate AGCMs. This comparison does suggest that the range of model behaviour could be better understood and reduced in conjunction with Earth climate simulations. Controlled experimentation is required to explore individual model behavior and investigate convergence of the aqua-planet climate with increasing resolution
    corecore