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Abstract: In order to satisfy the demand for the high functionality of future microdevices, research
on new concepts for multistable microactuators with enlarged working ranges becomes increasingly
important. A challenge for the design of such actuators lies in overcoming the mechanical connections
of the moved object, which limit its deflection angle or traveling distance. Although numerous
approaches have already been proposed to solve this issue, only a few have considered multiple
asymptotically stable resting positions. In order to fill this gap, we present a microactuator that allows
large vertical displacements of a freely moving permanent magnet on a millimeter-scale. Multiple
stable equilibria are generated at predefined positions by superimposing permanent magnetic fields,
thus removing the need for constant energy input. In order to achieve fast object movements with
low solenoid currents, we apply a combination of piezoelectric and electromagnetic actuation, which
work as cooperative manipulators. Optimal trajectory planning and flatness-based control ensure
time- and energy-efficient motion while being able to compensate for disturbances. We demonstrate
the advantage of the proposed actuator in terms of its expandability and show the effectiveness of
the controller with regard to the initial state uncertainty.

Keywords: cooperative microactuator; multistability; magnetic levitation; feedback control

1. Introduction

Multistability is an important system property found in a variety of microactua-
tors and corresponds to possessing multiple stable actuator positions. While it is most
commonly used in switches with two stable resting positions, extending the number of
equilibrium points opens up new possibilities in the functionality and application flexibility
of microsystems. Especially for actuators with large working ranges, which are currently
the focus of research, multistability may prove useful.

In order to enlarge the operating ranges of microactuators, mechanical connections
resulting in large restoring forces have to be overcome. Therefore, a considerable number of
actuator concepts have been proposed, which can be distinguished in particular on whether
the entire actuator or a single object is moved. The former includes impact mechanisms,
which generate a stepwise motion by repeated impact between an internal mass and a
stopper and can be realized using different actuation principles [1–3]. Stick-slip actuators
also move in small steps, but exploit different friction effects. Therefore, movements of both
high precision [4] and large displacements [5] are possible. Progress has also been made in
terms of new concepts, such as legged platforms, comparable to a linear motor [6,7]. In these
approaches, the actuator is driven by traveling waves, generated by piezoelectric MEMS.
Large travel ranges can also be achieved by more complex setups, such as the microrobot
of Floyd et al. [8]. In these cases, there are no restoring forces driving the actuator back
into its initial state. Thus, they are multistable since every position corresponds to a steady
state when no external input is applied.
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For many applications, however, the motion of a single passive object is sufficient. This
typically results in less complex designs, simplifying the assembly process. In the simplest
case, a small object, e.g., a magnet, can be used for a bistable switching application [9], or it
is moved between these two stable positions using feedback control [10]. The advantage of
the magnetic principle lies in the fact that both equilibrium positions are asymptotically
stable in their vicinity, even without further input. Other typical applications include linear
micro motors [11,12] and micro conveyor systems [13]. As proposed by Poletkin et al.,
conveyor systems can also be realized by arrays of inductive suspensions [14]. These have
in common that they are based on levitation of the moved object, but need constant energy
input to generate asymptotically stable equilibria. Another important criterion corresponds
to the achieved degree of freedom (DoF). Without adaption, these actuators can only be
used for planar movements and thus are strongly limited in the vertical direction.

In order to allow a flexible application in both the horizontal and vertical directions,
we previously presented a magnetic actuator moving a cylindrical permanent magnet
with one DoF [15]. To this end, finite element models (FEM) were used to calculate the
magnetic forces, and their complexity was reduced by different approaches, i.e., a lookup-
table, a semi-analytical compact model, and a parametric reduced order model [16,17].
These methods were then compared in terms of simulation time and accuracy, and their
usefulness for a controller design was demonstrated. The actuator consists of permanent
magnetic rings, generating two stable equilibrium positions: a lower one in contact with
a piezoelectric stack actuator, and a second one located at a predefined height, where
the magnetic object is stably levitated. Fast and efficient transient motion between these
positions is handled by cooperation of the stack actuator, enabling a fast initial acceleration
of the magnet to be moved, and a controlled catch at the second stable equilibrium,
using electromagnets.

A major drawback lies in the merely bistable design and the restriction of the movable
object to remain below the center of the electromagnetic solenoid, due to the limited
controllability. In this work, we therefore aim to extend the proposed design by multiple
solenoids and ring magnets, such that a greater number of resting positions is generated. In
order to reduce electrical currents within the solenoids, a cooperative mechanism between
the piezoelectric actuator and multiple solenoids is exploited. Moreover, an optimal
control strategy is used to find a trade-off between low solenoid currents and time-optimal
transitions. The effectiveness of the control scheme is demonstrated in the simulation, and
the expandability of the actuator is discussed. The advantage of the proposed concept lies
in its extensibility to larger working ranges as well as the generalizable control algorithm
for an arbitrarily extended actuator.

2. Methods

The microactuator setup investigated in this work consists of a movable, permanent
magnetic proof mass guided by a glass tube, a piezoelectric stack actuator, two permanent
ring magnets and two solenoids. In contrast to our previous work [15], the second magnet
is used to imprint a second levitating equilibrium position, rather than weakening the field
of the first magnet. The additional solenoid allows a less restrictive motion range of the
proof mass, which was an issue of the initial setup. The basic design is sketched in Figure 1.
The grayed-out part illustrates its expandability, which is discussed Section 3.1.
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Figure 1. The multistable microactuator consists of a movable, cylindrical magnet within a guiding
glass tube, a piezoelectric stack actuator (kick actuator), permanent magnets and electromagnets
(catch actuators). The transparent part depicts a possible extension to a third levitating equilibrium.

The working principle is as follows: Initially, the proof mass is placed on top of the
stack actuator, which corresponds to the lower resting position. In order to obtain an
impulse-like acceleration, the inverse piezoelectric effect is used to kick the cylindrical
magnet upwards. Subsequently, the electromagnetic solenoids are switched on and cooper-
atively catch it at the desired resting position in a controlled way. Since these positions are
asymptotically stable by design, the proof mass is suspended without the need for further
energy input. Concerning the transitions between the levitation equilibria, as well as the
downwards motion, mere electromagnetic actuation is applied. The control objective is to
achieve fast movements with minimum solenoid current. For this purpose, a mathematical
system model containing all relevant effects is derived, and an optimal model-based control
strategy is presented.

2.1. Modeling

The overall system can be described by the dynamics of each individual component
and the respective couplings between them. The model is adapted from [15] and gener-
alized for an arbitrary number of magnets and solenoids. Let us assume that the setup
comprises m ring magnets and n electromagnets. The dynamic behavior of the current ik(t)
of the k-th solenoid with inductance Lk, wire resistance Rk and input voltage uk(t) is then
given by the following:

Lk
dik(t)

dt
= uk(t) + uind,k(t)− Rkik(t) , (1)

where uind,k(t) is the voltage induced due to the change of electric current within the other
solenoids. Given the coupling inductance Lj,k describing the influence of the j-th solenoid
on the k-th solenoid, the induced voltage is defined by the following:

uind,k(t) = −
n

∑
j 6=k

Lj,k
dij(t)

dt
. (2)

The current of each solenoid affects the proof mass with vertical position z(t) in terms
of an electromagnetic force Fem,k(z, ik), which is defined below in (9).

Similar to [18], we assume the piezoelectric actuator to behave like a linear second
order system but neglect the hysteresis effect. Although the literature suggests more
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complex, nonlinear dynamics [19,20], this approximation seems justified, due to the short
time of contact between the piezo and the proof mass. Therefore, we model the deformation
d(t) of the piezo as follows:

M d̈(t) = −M g− cA ḋ(t)− kA d(t)− Fc(t) + Fu(t) , (3)

with the effective mass M, gravitational acceleration g, damping coefficient cA and stiffness
kA. The force that results in the deformation by applying a voltage uA(t) is considered
by Fu(t) and the interaction with the proof mass corresponds to the contact force Fc(t).
In order to describe Fu(t) in dependence of the applied voltage, we consider the static
piezoelectric behavior. As proposed in [21], we use a linear relation between the force,
deflection, and input voltage, resulting in the following:

Fext = −kAd + kAd33nAuA = −kAd + Fu (4)

with the piezoelectric constant d33 and the number of stack layers nA of the piezoactuator.
Here, the external forces including the gravitational force are summarized in Fext. Due to
the stiffness term, the maximum force, i.e., the blocking force Fmax, is achieved by applying
the maximum voltage Umax in case of a zero displacement d = 0. By inserting these values
into (4), we obtain the following expression:

kAd33nA =
Fmax

Umax
(5)

and thus simplify the piezoelectric force as the following:

Fu(t) =
Fmax

Umax
uA(t) . (6)

The magnet motion can be summarized to the following:

m z̈ =
m

∑
k=1

Fpm,k(z) +
n

∑
k=1

Fem,k(z, ik) + Fc(z, ż, d, ḋ)− cf ż−m g , (7)

with the force Fpm,k(z) corresponding to the k-th ring magnet, gravitation according to
the proof mass m and friction with the coefficient cf. Note that the time dependencies are
neglected for readability. The magnetic forces can further be decomposed into position-
dependent shape functions f̃pm,k(z), f̃em,k(z) and proportional weighting factors as the
following [22,23]:

Fpm,k(z) = Br,pm,k Br,p f̃pm,k(z) = fpm,k(z) (8)

Fem,k(z, i) = ik Br,p f̃em,k(z) = ik fem,k(z) . (9)

The values Br,p, Br,pm,k are the magnetic remanences of the proof mass and ring
magnets. The forces are precomputed numerically with ANSYS® Maxwell [24] and are
implemented as spline-interpolated lookup tables.

The contact force Fc(z, ż, d, ḋ) between the movable mass and the piezoelectric ac-
tuator is approximated by a viscoelastic formulation adapted from Specker et al. [25].
Thus, by softening the contact characteristic, we mathematically allow a small penetra-
tion s⊥(t) = z(t)− d(t) of the piezo surface being counteracted by a force. The adapted
approach is comparable to a spring with nonlinear contact stiffness, or activation func-
tion,Ra(s⊥), but additionally takes into account energy loss at the impact, using a power
functionRp(ṡ⊥). The contact force can then be computed by the following:

Fc(s⊥, ṡ⊥) = Ra(s⊥)
∂Rp(ṡ⊥)

∂ṡ⊥
. (10)
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Since the original formulation of Specker et al. considers possible material breach
withinRp(ṡ⊥) andRa(s⊥), which are not necessary in this work, the individual functions
are adapted. Thus, we use the power function as follows:

Rp(ṡ⊥) =
ṡ⊥
2
− log(cosh(rd ṡ⊥))

2rd
(11)

with damping parameter rd and the following piecewise activation function:

Ra(s⊥) =


0 , if s⊥ ≥ 0

k2
c

4F∗ s2
⊥ , if −2F∗

kc
< s⊥ < 0

−kc s⊥ − F∗ , otherwise .

(12)

Here, kc and F∗ are design parameters corresponding to the contact stiffness and the
force at the transition between the quadratic and linear parts. These values can be adjusted
to achieve realistic impact behavior while being feasible for a standard numerical ODE-
solver. Finally, we define the state vector x(t) comprising all individual state variables, i.e.,
the following:

x(t) =
[
z ż i1 i2 . . . in d ḋ

]> . (13)

It is important to mention that the presented model is not assumed to be a highly
accurate representation of the later setup. Instead, it is necessary in an early stage of system
design when no prototype is available. It is deployed to analyze system properties and to
design component dimensions and controller architectures.

2.2. Trajectory Planning and Control

Based on the system model, we now derive a control strategy that efficiently exploits
the cooperative mechanism in order to minimize the transient time and input current. To
this end, we consider the kick and catch motions as separate parts. First, the piezoelectric
kick is used to accelerate the proof mass. Subsequently, the controller is switched on,
transferring the new initial state, i.e., the terminal state of the kick, into the desired final
state.

2.2.1. Piezoelectric Kick

Accelerating the magnet by electromagnetic actuation needs large currents. Moreover,
this process is slowed down due to restrictions in the maximum current. In case of the
presented actuator, we therefore use a mechanical kick force to start the upwards motion.
This is achieved by applying a voltage spike to the piezoelectric actuator, resulting in a large
deformation of its surface and thus a fast acceleration of the proof mass. For an efficient
kick, a fast voltage rise is important, while further input after the initial acceleration is
unnecessary. These requirements are fulfilled by an input voltage trajectory following the
course of time expressed by the following:

uA(t) =
Up

Û

(
exp

(
− t

τ1

)
− exp

(
− t

τ2

))
, (14)

which will be used with the time constants τ1 = 0.1 ms, τ2 = 2.5 ms in the remainder
of this work. Here, Up ≤ Umax corresponds to the predefined peak voltage, and Û is a
normalizing factor given by the following:

Û =

(
τ2

τ1

)τ1(τ1−τ2)
−1

−
(

τ2

τ1

)τ2(τ1−τ2)
−1

. (15)

Note that for the practical setup, only the time course of the initial steep edge is
important, and the exact voltage may be realized differently. Moreover, instead of an
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analytical approach, an experimental setup is preferable for the identification of the actual
proof mass acceleration.

After the time Tkick, the electromagnets are switched on. We therefore use the terminal
position and velocity z(Tkick), ż(Tkick) as initial values for the following control approach.

2.2.2. Flatness-Based Control

Feedback control is applied to obtain smooth motions between the resting positions
and to compensate for potential disturbances. The states of the proof mass and the solenoids
are independent, with exception of the impact during the downwards motion. Hence, we
neglect the variables d(t) and ḋ(t) for now, and thus consider only the magnetic part. We
now have to define a distinct relation as follows:

ik(t) = g(Fem(t)) (16)

according to (9), to compute the separate currents ik from the overall electromagnetic force.
Hence, the system is flat with respect to the output variable z, which is advantageous for
the control approach. Flatness means that all states and inputs can be reconstructed by
means of the output variable and a finite number of its derivatives. This enables us to
choose a feasible, sufficiently smooth reference motion zref and inversely compute the state
and input trajectory using this output and its derivatives [26].

It is important to mention that the relation (16) is not automatically fulfilled by the
system. However, we can achieve this property by utilization of an appropriate cascade
structure, which will then be combined with the flatness-based controller. For this purpose,
the system is split up into two parts: the linear system comprising the solenoids, and
the nonlinear part describing the relation between electromagnetic force and proof mass
position. These partial systems are coupled by expression (9). The overall control approach
is shown in Figure 2 and is explained in detail in the following.

State Trans-
formation

Feedback
Linearization

Trajectory
Generator

Linear
System

Nonlinear
System

(a)(b)

(c)

[z, ż]>Femiu

Ki

Si

wi

Kz

ξξref

z(3)ref

rref

ν

Figure 2. Combination of cascade control and flatness-based control. The linear partial system, i.e.,
the solenoids, are controlled by linear state feedback with controller gain matrix Ki and prefilter Si

(a) and the nonlinear system is handled using a feedback linearization approach (b). A trajectory
generator is used to compute optimal reference motions and deviations between the current state
and reference are compensated by a second linear controller with controller gain Kz (c).

In order to achieve the desired flatness property, we first have to ensure that the
individual currents ik follow a reference wk, which fulfills the necessary condition (16).
Therefore, an inner control loop for the solenoid system is used. We collect the solenoid
inputs and currents within the vectors u and i. According to Equations (1) and (2), the
linear partial system can compactly be written as the following:
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L
di(t)

dt
= u(t)− Ri(t) , (17)

with the invertible, symmetric inductance matrix L and diagonal resistance matrix R.
We can now imprint n eigenvalues pi = [p1, p2, . . . , pn] on the system by computing an
appropriate feedback matrix Ki by pole placement and using the control law as follows:

u(t) = −Ki i(t) + Siwi , (18)

as seen in Figure 2a. Here, the subscript i denotes the correspondence to the solenoid
control loop. The vector wi is the reference variable for the solenoid currents and Si is a
prefilter, which in our case is calculated by the following:

Si =
[

L(Ki + R)−1L−1
]−1

. (19)

The prefilter is used to ensure stationary accuracy. For more detailed information on
multivariable linear control, the reader is referred to [27].

A second controller stabilizing the proof mass motion along a given trajectory is
necessary. Due to the flatness property, dynamic feedback linearization can be used,
compensating the nonlinearities within the overall system [28]. For this purpose, the
following state transformation from the nonlinear state x to a linear state ξ is necessary:

x(t) =
[
z ż i1 . . . in

]> T (x)−−−−−−→ ξ(t) =
[
z ż z̈

]> (20)

This can be found by reformulating (7). So far, there does not yet exist a distinct back
transformation needed for the linearization approach. In other words, given z, ż and z̈,
there exist arbitrarily many input combinations i(t) leading to the same electromagnetic
reference force Fem,ref and therefore to z̈. To overcome this, an artificial expression is
derived, distinctly defining the currents i(t) in dependence of a single input parameter
r(t), and therefore also the reversible transformation from [z ż r] to [z ż z̈].

Since we aim to minimize the currents, the solution at a single time instant is obtained
by solving the following optimization problem:

min
ik , k=1,...,n

n

∑
k=1

i2k(t) (21)

s.t.
n

∑
k=1

ik(t) fem,k(t) = Fem,ref(t) . (22)

This results in the following:

ik(t) = r(t) fem,k(t) , (23)

with the new single input

r(t) =
Fem,ref(t)

∑n
k=1 f 2

em,k(t)
. (24)

That means that the transformation law (23) distributes the currents in such a way
that the solenoid with the largest effect on the proof mass contributes the most to achieve
the necessary force. This is a large improvement, compared to the previous solution with
a single electromagnet, where a singularity occurs when the movable magnet coincides
with the center of the solenoid [15]. It can be seen that the desired relation (16) between the
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electrical currents and the electromagnetic force results from Equations (23) and (24). The
transformed system then has the following dynamics:

ξ̇(t) = f (ξ, ν) =

0 1 0
0 0 1
0 0 0

ξ(t) +

0
0
1

ν(t) (25)

with virtual input ν corresponding to the third motion derivative z(3). It is now possible to
find a linear control law for ν and stabilize the complete nonlinear system by the inverse
computation of wi from ν. This can be achieved by derivating (7) over time, inserting
Equations (17)–(19) and subsequent reorganization. Note that for the reference currents
wi, the same transformation (23) to a single input rref has to be performed. Instead of
Equation (24), this is given by the inversely computed feedback linearization as follows:

rref(t) =
m ν + cf z̈− (∇Fpm + i>∇ f em) ż + f>em L−1(R + Ki) i

f>em L−1(R + Ki) f em

, (26)

which corresponds to Figure 2b. The following trajectory is now achieved by the control law:

ν(t) = z(3)ref + Kz(ξref(t)− ξ(t)) (27)

with an at least twice differentiable trajectory zref that fulfills the transformed initial con-
dition ξ0 = T (x0). For the computation of matrix Kz, we again use pole placement. The
controller of the outer control loop based on the state transformation (20) is labeled as
Figure 2c. Given the flatness-based controller, it now remains to find suitable trajectories
z(3)ref and ξref, which is the goal of the following trajectory planner.

2.2.3. Optimal Trajectory Planning

We aim to find motions that efficiently enable the proof mass to switch between the
equilibrium positions, while also taking into account the initial state after the kick motion.
Without loss of generality, we assume an arbitrary but known initial state ξ0 = ξ(t0) at
time t0 = 0. The goal is to find a sufficiently smooth trajectory, transferring the nonlinear
system into the final state ξf over the transition time Tf.

In general, this can be achieved by connecting the initial and final state of a single
transition with a polynomial, matching the initial and final conditions of the appropriate
order. However, this may result in undesired oscillation and overshooting, comparable
to the overfitting problem of neural networks. Instead, we use an optimization-based
method with the goal to find trajectories with a low input current and short transition time,
minimizing the cost function

J(Tf, i) = w1 Tf + w2

∫ Tf

0
i(t)> i(t) dt (28)

with weighting factors w1 and w2. To this end, we parameterize the trajectory using the
parameter vector σ = [σ0, σ1, . . . , σs]. The optimization problem is then described by
the following:

min
Tf, σ

J(Tf, i) (29)

s.t. ξ̇(t) = f (ξ, ν) (30)

ξ(0) = ξ0 (31)

ξ(Tf) = ξf , (32)
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where (30) corresponds to the linear dynamics (25), and (31) and (32) are the initial and
final state conditions. The time integral in (28) is approximated by the following:

∫ Tf

0
i(t)> i(t) dt ≈ Ts

q

∑
j=0

i(j Ts)
> i(j Ts) (33)

with sampling time Ts = Tf/q. Moreover, we directly optimize the linear system input ν.
The minimization problem is highly nonlinear due to the relation between the electrical
currents and the linear motion. It is a known issue that for nonlinear problems, gradient-
based optimization algorithms strongly depend on the initial parameterization and can get
stuck in unsuited local minima. Therefore, Bergman et al. [29] proposed to initialize the
motion with a predefined, suboptimal trajectory. We adapt this idea by superimposing a
controller-based trajectory νctrl, further denoted as nominal trajectory, with the output νopt
of the optimization algorithm, that is, the following:

ν(σ, t) = νctrl(t) + νopt(σ, t) . (34)

For the nominal trajectory, we aim to find a preferably smooth function, connecting the
initial and final states. Since each individual transition, with exception of the ones including
the initial kick, begins and terminates in a state with zero velocity and acceleration, we
choose a 5th order polynomial as the nominal trajectory. In the case of initial velocities,
however, this function can result in a large overshoot, making it unusable for the motions
with a piezoelectric kick. In order to remedy this issue, we use the analytic expression
as follows:

νctrl(t) = −λ3
1 a e−λ1 t − λ3

2 b e−λ2 t − λ3
3 c e−λ3 t (35)

for these trajectories, which can be found by the inverse Laplace transform of a stable,
non-oscillating linear third-order system. Here, λl > 0, l = 1, 2, 3 correspond to predefined
damping coefficients, and a, b, c are computed such that the initial conditions ξ0 are fulfilled.
Consequently, the initial values of the three time integrals of νopt have to be zero. We know
from Section 2.2.2 that the desired trajectory has to be at least twice differentiable. Thus,
we can define νopt to be a piecewise constant function as follows:

νopt(σ, t) = σs, s Th ≤ t < (s + 1) Th . (36)

For a better understanding of such a superimposed trajectory, an example is visualized
in Figure 3.

0 0.2 0.4 0.6 0.8 1
0

2.5

5

z
in

m
m

0 0.2 0.4 0.6 0.8 1
t in s

-1

0

1

ν
in

m
s−

3

Figure 3. Superimposed proof mass trajectory that fulfills the initial and final condition up to the
second order. A nominal trajectory (blue) and an optimized, piecewise constant function (red) are
superimposed and result in an optimal trajectory (black). The amplitudes of the piecewise function
correspond to the optimization variables σ.

The number of time intervals Th can be chosen arbitrarily, but have to be at least three.
This is due to the fact that the controller trajectory is used for meeting the initial conditions,
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but its state transition only asymptotically approaches the desired final state ξ f . In order to
compensate the deviation, the three last parameters σk are fixed and cannot, therefore, be
optimized. Their values can be obtained by solving a system of linear equations and are
therefore not discussed in detail. The advantage of the superposition-based optimization
is that, in general, acceptable solutions are obtained while the parameters can simply be
initialized with zeros.

However, when the proof mass comes in contact with the stack actuator, numerical
issues can arise during the optimization to the lower resting position. The most acceptable
results, also in terms of computational time, are achieved by computing the inverted
problem, that is, optimizing the motion starting at ξf and ending up in ξ0. Subsequently,
the resulting state trajectory has to be mirrored with respect to time, and the sign of every
even derivative must be switched before evaluating the cost function.

Finally, for the utilization of an optimization toolbox based on symbolic calculations,
the lookup-table for the magnetic forces cannot be implemented. To this end, we use a single
layer radial basis function (RBF) neural network to obtain an analytical approximation.
See Wu et al. [30] for a more general view on RBF networks. In our case, we use the
approximator as follows:

Fpm(z) ≈
η

∑
µ=1

αµ exp

(
−
(

z− γµ

β

)2
)

, (37)

which corresponds to a superposition of η Gaussian functions with respective center γµ

and weighting factor αµ. The parameter β adjusts the width of the basis functions and is
chosen identically for each function. We then distribute the center points equidistantly
throughout the relevant z-space. Since Equation (37) linearly depends on the remaining
parameters αµ, we can use linear regression to fit the approximator to the data. The same
method can be used for fem,k.

3. Results

We now combine the theoretical methods of the previous sections and demonstrate
their usability. To this end, we first discuss the multistability and expandability property
of the microactuator. This will facilitate the understanding of the subsequent simulation
results of the control approach. All results were obtained using MATLAB® [31], with the
exception of the magnetic forces, which were computed with ANSYS® Maxwell [24]. The
optimization problem was solved using CasADi [32] with the solver IPOPT [33].

3.1. Multistability Consideration

The property of a magnet to either attract or oppose another magnet can be used
to generate stable equilibrium positions, as far as the moving magnet is constrained to a
single DoF motion, as is enforced by the glass tube in our case. An equilibrium position
results from the overall force acting on the proof mass, being equal to zero. For a vertical
setup, this corresponds to the intersection of the magnetic force with the absolute value
of the gravitational force of the proof mass. Moreover, this resting position is stable if
the force gradient at this point is negative, i.e., a slight deviation of the proof mass to a
higher position leads to a negative force and vice versa. The stability can be proved by
Lyapunov’s direct method [34]. Provided that the maximum magnetic force is larger than
the gravitational force, there exists at least a single stable equilibrium position. In our
previous work [15], a second stable position was generated due to the contact with the stack
actuator. Here, we take advantage of the nonlinearity of the magnetic force to generate a
larger number of equilibria at predefined positions by superimposing magnetic fields of
multiple ring magnets. For this purpose, we use a cylindrical proof mass with 1 mm height
and diameter. The magnets’ dimensions used in this study are given in Table 1.
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Table 1. Magnet dimensions used in this study.

Component Height in mm Inner Radius in mm Outer Radius in mm Mass in mg

Proof mass 1 – 0.5 3.77
Ring magnet 0.5 1.5 2.2 –

In general, the number of generated equilibria corresponds to the number of ring
magnets used in the setup. Our goal is to imprint resting positions at integral multiples
of 2.5 mm for a cylindrical permanent magnet with 1 mm height and diameter. For a
design comprising two ring magnets (setup 1), the resulting magnetic force is visualized in
Figure 4a. The underlying setup parameters are given in Table 2.
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Figure 4. Simulated magnetic force characteristic Fpm of the superimposed magnetic fields. The
intersections with the gravitational force (dashed, gray) correspond to the predefined, stable equilibria
and are marked by red circles. (a) Setup 1: two equilibria are generated by superimposing two
magnetic fields. (b) Setup 2: the identical resting positions are achieved by three ring magnets, but
the choice of magnet parameters is more flexible. The third equilibrium of Setup 2, which is above
7 mm, is unintended and therefore not shown.

It is important to mention that the larger the ring magnets’ dimensions and mag-
netic remanences, the larger the minimum possible distance between the two equilibrium
positions. This results from the fact that, otherwise, a ring magnet generating a stable
equilibrium at one position simultaneously implies a force at the desired lower position
that may be either too large or too negative to be canceled by the lower magnet. This makes
a systematic search for a feasible design difficult; we were able to find only a few feasible
solutions for Setup 1, using unusually small remanence values (see Table 2). Similar to our
previous work [15], this problem can be mitigated by utilization of an additional magnet,
which is not used to generate another equilibrium, but to weaken the field of the highest
magnet. Thus, we could be more flexible by the choice of the magnetic remanences. Setup 2
in Figure 4b demonstrates the advantage of this approach. Here, the two predefined
resting positions were achieved by using identical ring magnets with remanences of 0.2 T,
which corresponds to the lowest possible value for hard ferrite and is therefore considered
producible. For Setup 1, the design is not feasible for such remanence values.

It is possible to extend the presented actuator to more equilibrium positions by stacking
a larger number of ring magnets. Two examples are shown: Figure 5a shows three equilibria
generated by four ring magnets, and in Figure 5b, four resting positions are imprinted by
five magnets.
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Figure 5. Magnetic force characteristic for the extended, multistable microactuator. (a) Setup 3: Three
stable equilibria (red circles) were generated by four ring magnets. (b) Setup 4: Four resting positions
could be achieved with five ring magnets.

We are not aware of a general limitation for the maximum number of equilibria that
can be generated, but assume that it depends on the specific magnet parameters. It should
be noted, however, that finding a suitable setup is not a trivial task and may not be achieved
heuristically for larger setups. An optimization-based search may, therefore, be used to
reduce this effort, but its solution strongly depends on a well-chosen a priori estimation of
the individual magnet positions, which is generally difficult to achieve.

Moreover, the small size of the ring magnets can pose a challenge. We assume that
similar results as those presented in this work can be obtained by generating weaker
magnetic fields using different magnets, e.g., by replacing the small ring magnet by a larger
one with internally alternating magnetizations, comparable to Halbach arrays [35], or an
axis-symmetric distribution of smaller magnets. These alternative concepts are visualized
in Figure 6 and should be investigated in further research. For the simulation results of the
control approach in the following section, Setup 1 given in Table 2 is used.

(a) (b)

Figure 6. Alternative concepts for achieving suitable magnetic force characteristics. (a) A Halbach
array-like magnet design may be used to weaken the magnetic field. (b) Multiple single magnets can
be used instead of a small ring magnet.
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Table 2. Experimental Setups 1–4 and respective parameters used to generate multiple
equilibrium positions.

Setup Magnet Remanence in T Position in mm

1 Br,p 0.1 –
Br,pm,1 0.12 1.592
Br,pm,2 0.1 3.296

2 Br,p 0.2 –
Br,pm,1 0.2 1.225
Br,pm,2 0.2 3.746
Br,pm,3 0.2 6.338

3 Br,p 0.2 –
Br,pm,1 0.2 1.143
Br,pm,2 0.2 3.807
Br,pm,3 0.2 6.223
Br,pm,3 0.2 8.868

4 Br,p 0.2 –
Br,pm,1 0.2 1.283
Br,pm,2 0.2 3.670
Br,pm,3 0.2 6.344
Br,pm,4 0.2 8.701
Br,pm,5 0.2 11.42

3.2. Simulation Study

Given the magnetic setup with two equilibrium positions (Setup 1), we now want
to demonstrate the effectiveness of the cooperation between the kick and catch actuators
as well as the control approach in simulation. The setup parameters are given in Table 3.
The parameters concerning trajectory planning and control are summarized in Table 4,
where the controller gain matrices Ki, Kz for the inner and outer control loop result from
the chosen poles pi and pz. Note that, due to the strong dependency of the optimized
trajectory from the initial velocity v0 after the kick, it proves convenient that the parameters
λl of the superimposed trajectory (35) also depend on the velocity. In the remainder of this
work, we use the heuristically chosen law as follows:

λ = [6, 8, 10] + 2.5 v0 , (38)

which seems sufficient for this study. However, a more general expression may be derived
by a preceding optimization, which is out of the scope of this work.

Table 3. Fixed design parameters that are used in the simulation.

Description Value Description Value

Inner radius (solenoid) 0.8 mm Resistance (solenoid) 281Ω
Outer radius (solenoid) 1.2 mm Fmax (piezo) 360 N
Height (solenoid) 1.5 mm Umax (piezo) 100 V
Wire diameter (solenoid) 25 µm kA (piezo) 1.1 MNm−1

Specific resistance (solenoid) 18 nΩm M (piezo) 1.8 g
Number of turns (solenoid) 1222 cA (piezo) 25
Inductance (solenoid) 3.9 mH f (proof mass) 2.5× 10−4

Mutual inductance (solenoid) 2.0 mH kc (contact) 4.5× 106

Position (solenoid 1) 2.2 mm F∗ (contact) m g
Position (solenoid 2) 4.7 mm rd (contact) 3
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Table 4. Trajectory planning and control parameters used in simulation.

Description Value

pi [−400 + 100i,−400− 100i]
pz [−200 + 100i,−200− 100i,−150]
Ki [−280.3, 1.19; 0.41, − 279.8]
Kz [7500, 110, 0.5] × 103

Tkick 1 ms
β 1

Starting with the proof mass located on top of the stack actuator, we initiate the kick
using different voltages between 0 V (no kick) and 100 V (full kick). Recall that the goal is
to reduce the solenoid currents. Therefore, all motions are optimized with respect to the
cost function (28). In the following, we use four parameters σs, s = 1, . . . , 4 to describe the
trajectory. The simulations are carried out for the transition of the proof mass to both the
middle and upper equilibria; the results are visualized in Figure 7.
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Figure 7. Combined kick and catch trajectories to both equilibria for different piezoelectric kick
voltages between 0 V and 100 V. Top panel: position z of the proof mass. Bottom panel: the respective
sum of squared electrical currents. (a) The kick to the equilibrium at 2.5 mm is shown. (b) A similar
effect is achieved for the kick to the equilibrium at 5 mm. In both cases, the electrical currents are
reduced with increasing kick impact.

It can be seen that the piezoelectric kick has a positive effect on the efficiency by largely
reducing the input currents and simultaneously achieving faster transitions to both resting
positions. Between the missing and full kick, the sum of squared currents is reduced by
87% for the transition to the lower resting position and by 82% for the motion to the upper
equilibrium. Simultaneously, the transient time can be reduced by up to 32% and 11%,
respectively. This result confirms the assumption of our previous work [15], where only
a single piezo voltage and equilibrium position were used to demonstrate this effect. In
the time course of the squared currents in Figure 7b, a second peak in the current can be
seen for each kick. This corresponds to the current needed to decelerate the proof mass.
This suggests that for larger piezo forces, the kick may have the opposite effect, due to
an increased effort for damping the magnet velocity. For a general setup, the kick should
therefore, be optimized simultaneously with the trajectory.

So far, we assumed that for a certain voltage, each kick is identical and corresponds to
the time course predicted by our model, which in turn allows us to precisely follow the
trajectory. However, the preliminary experiments showed that this is not necessarily the
case, e.g., due to random impact between the proof mass and the guiding tube. This results
in an unexpected initial state when the controller is switched on after the kick. In order
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to compensate for such disturbances, feedback control is used. Here, we approximate the
effect of an initial disturbance by applying a different voltage to the piezo than what was
expected within the optimization. The ability to asymptotically converge to the intended
motion is demonstrated, using the 50 V-kick to the upper equilibrium. The initial state
uncertainty is artificially generated by both higher and lower voltage impulses. In all
simulated cases, the controller is able to compensate the disturbance within the transition
time as seen in Figure 8.
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Figure 8. Feedback control simulation compensating for initial state uncertainty. The expected initial
state resulting in the reference trajectory (dashed, black) for 50 V is not achieved due to incorrect
kick voltages. Feedback control compensates this error and the proof mass motion asymptotically
converges to the desired trajectory for different piezo voltages.

Finally, we evaluate the efficiency of the trajectory generator in terms of minimum
energy effort. To this end, we compute reference motions using a different number of
optimization parameters σs. The trajectories are then compared with the costs of the
classical unoptimized approach, i.e., connecting multiple polynomials. As mentioned in
Section 2.2.3, the polynomials tend toward large overshoots when combined with the
piezoelectric kick. Thus, we neglect the kick and only apply electromagnetic actuation
for the following comparison. We evaluate the overall costs of a motion containing all
combinations of transitions between the three equilibrium positions. A visualization of
the costs over the number of optimization parameters is given in Figure 9. Three of these
trajectories are shown in Figure 10, namely, the unoptimized polynomial trajectory and
two optimized ones with 2 and 20 optimization parameters σs.
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Figure 9. The trajectory costs over the number of parameters are shown. The red circle corresponds
to the polynomial trajectory and the blue circles to the optimized motions. Although there is a fast
cost function decrease for a low number of parameters, the costs oscillate and slightly increase for
more than 10 optimization variables.
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Figure 10. Comparison of trajectories and respective currents with different numbers of optimization
variables. (a) Top panel: for the polynomial trajectory, smooth motions were generated and the
transition times were optimized. Middle panel: the trajectory with two parameters σs and optimized
transient time is less smooth but has lower costs. Bottom panel: the lowest costs were achieved with
20 parameters σs. The dashed line corresponds to the desired final position of the proof mass. (b) The
sum of squared currents corresponding to the different trajectories is shown. For the trajectory with
20 parameters, the solution is non-smooth due to fast changes in the current, but the transient time
and the sum of squared currents are the lowest.

Although the polynomial trajectory is the smoothest one, the optimized motions are
more efficient, compared to the cost function. As was expected, the cost function values
decrease with the increasing number of parameters. However, the optimized solution using
a single parameter σs is less efficient than the time-optimized polynomial trajectory. This is
due to the fact that the σ-dependent trajectory uses an exponential function for transitions
from the bottom to an upper equilibrium, which is less effective than the polynomial in
the case where there is no piezoelectric kick. For s > 1, the superposition strategy is more
efficient than the polynomial trajectory. Moreover, the polynomial trajectory can result in a
large overshoot when applied after the kick motion.

An interesting result corresponds to the non-smoothness of the optimized trajectories,
which appears in the form of larger spikes in the electrical current. Compared to the mostly
smooth input for the polynomial approach, the optimized trajectories make use of short but
high current spikes in order to efficiently move the proof mass. Although the maximum
input current is larger for the optimized trajectories, the evaluated time integral is smaller
for the trajectory with 20 parameters, and the costs concerning the transition times are lower
for both optimized trajectories. The correlation between the trajectory smoothness and the
cost function should be investigated in the future. For a final assessment of the quality of
the presented optimization approach, knowing the lower bound, i.e., the global minimum,
is an advantage. This could be realized by a global optimizer, such as a genetic algorithm.

It should be mentioned that the nominal trajectory plays an important role for finding
a meaningful solution, but may also prevent the optimization algorithm from finding a
better optimum. Therefore, a considered choice should be made beforehand. Eventually,
the individual motions could now be stored on the controller hardware of a real setup
and run on command to initiate the respective motion. Due to its general simplicity, we
assume that the presented approach can also be used as an initial solution for similar flat
1-DoF systems.

4. Discussion

The magnetic microactuator has several advantages, such as multiple, asymptotically
stable equilibria and the expandability to a larger number of resting positions. This can



Actuators 2021, 10, 183 17 of 19

prove useful for future applications, where large working ranges are necessary, and the
proof mass is desired to remain in its position, even without a constant energy supply.
We have shown that a cooperative mechanism combined with an optimal control strategy
is useful for reducing the electrical load on the solenoids, which results in less heat loss
and may extend the durability of the components. Moreover, the control strategy is
generalizable to an arbitrarily extended design, such that the implementation effort is
kept low. However, the non-smooth behavior of the optimized electrical currents may be
undesirable in an experimental setup. Smoother motions can be obtained by specifying
trajectories that are differentiable more often. In contrast to other stable actuator concepts,
the transitions between the equilibrium positions are unstable and the controller design
is indispensable. This means that for an experimental setup, sensors for measuring the
solenoid currents and the proof mass position are necessary. The latter can be challenging,
especially when cost-effective solutions are preferred. Therefore, principles based on
induced voltage or measuring the magnetic field can be investigated.

Moreover, the proposed approach assumes fully known permanent magnetic fields
without variability in their homogeinity and field strength, which is generally not the case
for real magnets. While it may be possible to experimentally adapt the magnet positions to
achieve multiple stable equilibria at predefined positions, such an uncertainty in the mag-
netic field is problematic for the proof mass motion, due to the strong model dependence of
the inverse computation within the control algorithm. Although a rough estimation of the
magnet tolerances for which the trajectories can be tracked with acceptable error could be
achieved through extensive simulation, careful measuring of the single magnets may still
be necessary before assembly. For this reason, we suggest a first estimation of appropriate
magnets in simulation, experimentally identifying the corresponding real magnets, and
subsequently recomputing the magnet positions and trajectories based on the obtained
values. Since small changes in the magnetic field mostly affect the inverse computation
of the solenoid voltages rather than the cascaded linear control loops, we assume that the
choice of the controller gains can be adopted from the initial simulation without change.

Another important question concerns the possible miniaturization of such a microac-
tuator, which is closely linked to further research on its general limitations. In this work,
we showed that the magnets’ dimensions and remanences are strongly coupled with the
realizability of multiple equilibrium positions, particularly when short distances between
them are needed. Two possible solutions are, therefore, proposed: a Halbach array-like
permanent magnet or multiple smaller magnets. In both cases, the resulting force curve
should be large enough to generate a robust equilibrium, but narrow in terms of little
impact on the neighboring resting positions. Extensive finite element modeling will, there-
fore, be necessary. Finally, the efficiency of the overall system can further be improved by
simultaneously optimizing both the controller and the design, such that couplings between
them are exploited. It also motivates the investigation of fast, nonlinear optimal control
methods, which can enrich both control theory and microactuator technology.

5. Conclusions

In this work, we presented the extension of a cooperative, magnetic microactuator by
multiple, asymptotically stable equilibrium positions. This was achieved by shaping the
magnetic field by several ring magnets. Additional solenoids were used to allow motions of
a magnetic proof mass over a large working range. It was shown that, in general, the setup
is expandable to multiple, asymptotically stable equilibria at predefined positions. For the
realization of the underlying magnetic fields, two alternatives, besides small ring magnets,
were proposed to be investigated in future work. Moreover, we presented a control strategy
that ensures efficient switching of the proof mass between the resting positions. This
approach was designed in such a way that it is generalizable to an arbitrary number of
solenoids and minimizes the input current needed by the proof mass to follow a given
reference trajectory. This was also supported by an optimal trajectory planning approach
that considers a cooperative interaction between a piezoelectric stack actuator and the
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solenoids. We assume that the actuator principle and control approach are beneficial for
both the microactuator and control engineering community. However, the presented model
corresponds to an approximation and may be limited to hard magnetic materials with small
mutual influence on the respective magnetization. Moreover, the model parameters are
critical for an accurate compliance with the actual setup. It is, therefore, important to adapt
the model to the measured data. For this purpose, the presented theory will be verified
based on an experimental system in future work, upon which further investigations of the
limitations of the approach can be carried out.
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