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ABSTRACT 

For linear models with heterogeneous error structure, four variance function models are ex
amined for predicting the error structure in two loblolly pine data sets and one white oak data set. 
An index of fit and a simulation study were used to determine which models were best. The size 
of coefficients for linear and higher order terms varied drastically across different data sets, thus 
it is not desirable to recommend a general model containing both linear and higher order terms. 
The unspecified exponent model (]"2v; = (]"2(Dl H;)k 1 is recommended for all data sets considered. 
The kl values ranged from 1.8 to 2.1. We recommend kl = 2.0 for simplicity. 

1. INTRODUCTION AND LITERATURE REVIEW 

Weighted linear regression estimation is widely used in forestry to estimate total volume (V) 
as a function of diameter (D) at breast height squared times total tree height (H). The model 
commonly used is 

Vi = 0: + (3Df Hi + ei [ 1] 

where Dr Hi = Xi, with E[e;ej] = (]"2X~1 for i = j E[eiej] = 0 for if:.j and kl determines the rate 
of increase of the variance of the ei's. 

Cunia (1964) suggests kl = 2; McClure et a1. (1983) suggest using kl = 1.5 for white oak 
and loblolly pine. Gregoire and Dyer (1989) also estimate the heterogeneity in volume equations. 
They assume model (1) and estimate kl in several ways for loblolly pine (n = 209) and red pine 
(n = 91) data sets. They obtain kl = 1.70 - 1.84 for the loblolly pine and kl = 1.01 - 2.07 for red 
pine using three estimation methods. 

In the statistical literature Scott, Brewer, and Ho (1978) suggest that 

[2} 

might be generally suitable for data in many applications and Figure 3 in McClure et a1.(1983) 
confirms this to some degree. Davidian and Carroll (1987) note that reliable variance estimates are 
important in yielding improved estimates of the regression coefficients and are also of interest in 
their own right. The authors consider the heteroscedastic error regression model E[Yd = f(Xi, (3); 
Var (Yi) = (]"2 g2 (Zi, (3, 0) where g expresses the heteroscedasticity, the Zi are a function of known 
factors (for example Dr Hi), (]" is an unknown scale parameter, and 0 (r xl) is a vector of unknown 
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parameters. No assumption about the distribution of the Yi other than the form of the first two 
moments is made. Davidian and Carroll (1987) state several definitive conclusions that apply only 
to symmetric error distributions but should not be ignored in practice. 

1. Robustness is quite important in the efficiency of variance function estimation, probably even 
more so than in estimation of a mean function. The authors state, "For a standard con
taminated normal model for which the best robust estimators have efficiency of 125% with 
respect to least squares, the absolute residual estimator of the variance function has efficiency 
of 200%". 

2. Iteratively weighted least squares should be used so that the variance function estimate is based 
on generalized least squares residuals. The authors' experience has been that unweightedleast 
squares residuals yield unreliable estimates of the variance function when the variances depend 
on the mean. 

3. The precision of e is independent of (J'. 

Gregoire and Dyer (1989) discuss methods for fitting equation [1]. Their work indicates that 
maximum likelihood techniques produced superior results to methods based on squared residuals 
or transformed squared residuals. 

In this paper, we examine potential improvements in the results of McClure et al. (198:3) 
with equation [2] and other alternative variance functions using the same data sets but also a large 
additional data set to determine if a better error model exists. Maximum likelihood estimation 
procedures, recommended by Gregoire and Dyer (1989), are used to fit 

11; = ex + (3xi with E[eiej) = (J'2Vi for i = j where Vi = f(Xi) and E[eiej] = 0 for if. j. [:3) 

The parameters to be estimated by maximum likelihood are the ex, (3, (J'2, and the ki coefficients 
which determine the shape of the various different forms of the weighting function f(x;). 

Use of such regression equations can result in significantly improved overall estimates of volume 
and also of the estimates of reliability of such estimates. 

2. DATA DESCRIPTION 

Southeastern Loblolly Pine and White Oak Populations 

Individual sample trees used in this study were measured and tree volumes were computed 
using methods described by Cost (1978). There are 5,134 loblolly pine (Pinus taeda L.) trees 
and 1,484 white oak (Quercus alba L.) trees in these data sets (data was provided by Noel Cost, 
Southeastern Forest Experiment Station, Asheville, NC). Since 1963, the U.S. Forest Service Forest 
Inventory and Analysis (FIA unit) in the southeastern United States. has measured the volumes of 
individual standing trees on a subsample of all regular Forest Survey sample locations in Virginia, 
North Carolina, South Carolina, Georgia, and Florida. A supplemental sample of felled trees 
was also measured at hundreds of active logging operations distributed throughout the southeast. 
Trees were selected to ensure that an adequate sample of trees was taken from the range of tree 
diameters so that proportionally more large trees were selected for measurement than are found in 
the population. Trees were measured in a uniform manner by highly trained inventory specialists 
during the regular periodic inventories of the southeastern states. Special crews used marked 
sectional aluminum poles (McClure 1968) for length measurements and a McClure mirror caliper 
(McClure 1969) to measure upper-stem diameters in standing trees. All trees were measured as a 
series of tapering sections. Diameter outside bark, at both ends of each section, and section length 
were measured and recorded. Each section was identified to indicate its relative location in the 
tree and to identify various tree components and product classes. Measurements were taken from 
ground level to the tip of the main stem, from the base to the tip of each fork, and from the base 
to the top of all limbs having a base diameter outside bark of one-half inch or more. Therefore, 
only very small limbs, twigs, and foliage were excluded from above ground biomass measurement. 

Each tree's location, species, site, quality, diameter at breast height (d.b.h.), double bark 
thickness at breast height, and total height were also recorded. Double-bark thicknesses at various 
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points on the main stem were also measured and recorded for all felled tree samples. Bark
thickness equations by species were developed using upper-stem bark measurements from felled 
trees and double bark measurements at d.b.h. for all trees. These equations were then used to 
estimate diameter inside bark at all measurement points throughout the tree. Section volumes 
were computed with Grosenbaugh's (1952) cubic-foot volume equation, which provides sensitivity 
to section form and taper. Total-tree volume and total height were obtained by summing all section 
volumes and summing section lengths in the main stem. All loblolly pine and white oak sample 
trees were extracted from the large FIA database to provide data for this study. 

Southern Loblolly Population 

The southern loblolly data set consists of 14,379 loblolly pine (Pinus taeda L.) trees measured 
in Alabama (data was provided by Roy C. Beltz, Forest Sciences Lab, Starkville, MS). All standing 
loblolly pine trees encountered in the regular FIA survey were measured, so that trees in the sample 
were selected proportional to their basal area. The data set contains d.b.h., total height, height 
to a 4.0" diameter top, and volume for each tree. A small number of open-growth trees were 
removed from the data set since morphological differences were expected to exist between these 
trees and the rest of the data. The volumes were determined using Grosenbaugh's STX program 
(Grosenbaugh 1964) that calculates volumes from multiple diameter measurements made along 
the bole. Bole length of all live and salvageable dead trees with d.b.h. of 5.0" and larger were 
determined between the top of the one-foot stump and 4.0" diameter outside bark (d.o.b.) or the 
point where the central stem is terminated by branches, rot, or other disturbances, before reaching 
4.0" d.o.b. On trees which fork below d.b.h., and above 1 foot, the bole length was measured at 
the fork. The multiple diameter and height measurements used to calculate volume are stump 
d.o.b. at 1 foot, d.b.h., saw log middle bole d.o.b, sawlog top d.o.b., middle pole d.o.b., and pole 
top d.o.b. at 4.0" d.o.b. for saw log sized trees. For pole sized trees, diameters and heights were 
taken at the stump, d.b.h., middle pole, and pole top to a 4.0" d.o.b. 

3. METHODS 

To deduce the error structure of eq. [3] that is most supported by the data, we adapted the 
"combined variable model" as it is known in forestry, namely Xi = Dr Hi where Di is the d.b.h. 
and Hi is the stem height of the ith tree. The widespread use of this model in forestry is due both 
to its parsimony and to the cogent geometric interpretation it permits. 

After exploratory graphical analysis, the following four variance functions, Vi = f(Xi), were 
advanced as reasonable candidates for further study: 

[4] 

which has been studied by Cunia (1964), McClure et al.(1983), Meng and Tsai (1986), and Gregoire 
and Dyer (1989); 

[5] 

as suggested by Scott, Brewer and Ho (1978); 

[6] 

and 
[7] 

The last variance function is appealing since it will be non-negative for any value of the k7 coeffi
cient. We speculate that the variance of tree volume likewise increase with increasing Xi, but this 
phenomenon was not pursued since even larger data sets than the one currently available would 
be needed. 
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Under model [3] the log-likelihood is 

11 1 -11T-1 In L = --In(27r) + -In If.! 1- -f f.! f 2 2 2--' [8] 

where f is a column vector of residuals V; - a - (3Xj and f.! = E[ffT] = (j2 diag (Vj) where the vis 
are calculated using models [4]-[7]. Ordinary least squares (OLS) estimates of a, (3, were used as 
starting values. Approximate maximum likelihood estimates (MLE's) of a and (3 under each of 
the variance models [4]-[7] were obtained using iterative procedures. 

The MLE's of the parameter vectors fl.1 = (a, (3, (j2, kJ), f!..2 = (a, (3, (j2, k2 , k3),[b = (a, (3, (j2,_ 
k4 , k5 , k6), and fl.4 = (a, (3, (j2, k7) are those that minimize -In L for models [4]-[7], respectively. 
The minimum of -lnL with respect to ~, i = 1, .. .4 was found using IMSL routine DBCOAII 
(1989). This constrained optimization routine uses a modified Newton's method with an active 
set strategy to find min -In L with respect to OJ i = 1, .. .4, subject to the constraint (j2 > 0. The 
optimization routine requires both gradient (\7 - In L) and Hessian (\72 - In L) information that 
must be supplied by the user. 

A consistent estimator of the asymptotic variance-covariance matrix is given by the inverse 
of the information matrix (Kmenta 1986), where the information matrix is the expectation of the 
Hessian matrix: 

E[I(f!..j)] = (E[P(~:~L)]) 
-'-' 

[9] 

i = 1, .. .4. Using the information matrix, confidence intervals of all parameters can be obtained. 

Objectives and Criteria for Evaluation 

To determine which variance functions best describe the actual variance, an index derived by 
Furnival (1961) and Cox (1961) is used. This index compares the fit of different variance models 
and can be written as 

[10] 

where S is the standard error about the model. Smaller values of the index indicate a better fit. 
In addition to this index, two different simulation studies were performed to test the perfor

mance of the models in estimation. 
The first simulation study is entirely model-based. The purpose ofthe this simulation is to rate 

the reliability of models[4]-[7] in variance estimation assuming the models. Under the estimated 
volume model 

V; = a* + (3* D; Hj, [11] 

the variance of the predicted volume is 

var(V;) = var( a*) + (D; Hj)2var ((3*) + 2D; Hicov( a*, (3*) + (j2, [12] 

where var( a*), var((3*), and cov( a* , (3*), a*, and (3* were calculated by weighted least squares 
techniques using models [4]-[7] as weighting functions. Given a simple random sample of size 11, 

the estimate of total population volume is 

- N~-
V = - L..t Vi, 

11 j=1 

[13] 

where N is the total number of trees in the population. Thus the variance for the population 
estimator V for a simple random sample is given by 

- N 2~ -var(V) = (-) L..t var(V;). 
11 i=l 

[14] 
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The purpose for the second design-based simulation study was to determine which model 
provided the best estimate for total volume using model [11]. Simple random sampling was used 
with estimator [11] to determine if substantial improvements in volume estimation are possible 
for models [4]-[7], a* and (3* in [11] were calculated by weighted least squares using models [4)-[7) 
as weighting functions. The iterated standard errors were calculated for the estimates generated 
by [13]. In addition, the bias for the estimator given in equation [11] using models [4]-[7] was 
calculated. 

For both simulation studies 10,000 simulations were performed for each of the three popu
lations with models [4]-[7]. The sample size used was n = 40. For the first simulation study 

Jvar(Y) was used for comparing models[4]-[7], where var(Y) was the average variance over the 
10,000 simulations. For the second simulation study the iterated standard deviation and bias over 
the 10,000 simulations was used for comparison. 

4. RESULTS AND CONCLUSIONS 

The results listed in Table 1 give the coefficients for each variance function, the 95% confidence 
interval bounds, and the index of fit. For OLS values the index of fit is given. The index of 
fit indicates that for the southern loblolly data set, the best fitting model was model [5] (Vi = 
xi + kZX;3). For the white oak and southeastern loblolly data set, model [6] (Vi = 1 + k4Xi + k5X~6) 
was the best fitting model. For both loblolly data sets, model [7], Vi = (1 + k7Xi)2, was the 
worst fitting model. Model [7] was also the second poorest model for the white oak data set. The 
traditionally used model (Vi = x;') proved to be worst fitting model for the white oak data set 
and the second poorest fitting model for the loblolly data sets. Comparison of the index for OLS 
and the four other models show that the latter four differ little but have smaller index values than 
the OLS solution. 

Table 2 contains the results of the two simulation studies for the three populations. 
For the model-based simulation there were only small differences between the standard errors 

for models (4)-[7]. The only conclusion that can be drawn from the model-based simulation study 
is that all the models seem to be about equally efficient at estimating variance. 

For the design-based simulation there was no significant difference between the standard error 
or bias for models [4)-[7]. The only conclusions that can be drawn from the simulation study are 
that all the models seem to be about equally efficient at estimating volume using estimator [11]. 
Note that all four models had substantially smaller standard errors than the OLS solution. 

There are a number of practical problems with models [5]-[7] that make them undesirable. 
Numerically, models [5]-[7] are more difficult to find solutions for the parameter Oi, i = 2, .. .4. For 
the southern loblolly data set, no exact solution could be found for model [6] due to numerical 
problems with the IMSL routine. The IMSL routine returns an error message stating that the 
reduction for the In L is less than the relative function tolerance. An additional problem with 
model [6) is that this models can potentially give negative estimates of variance when the linear 
coefficient k4 is sufficiently less than zero. The most important problem with models [5]-[7) is that 
the linear and nonlinear coefficients kz , k4, k5, and k7 vary drastically across different data sets. 
This makes it infeasible to recommend a general model that contains more than a single term. 
Thus model [4] is the most robust of the models studied here. 
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TABLE 1. Estimates of variance function parameters, 95% confidence intervals, and the 
index of fit for models (4)-(7). 

Model 
(OLS) 

Index 

(4) (72(X;1) 
(72 

kl 
Index 

(5) (72(Xi + k2X;3) 
(72 

k2 
k3 
Index 

Southeastern Loblolly Southern Loblolly White Oak 

3.7432 5.3417 6.3352 

0.0000004900 ± 26.00% 0.0000000641 ± 14.40% 0.0000001593 ± .21.50% 
1.8025428088 ± 1.79% 2.0719429304 ± 0.84% 1.9764168660 ± 2.88% 
1.6158 1.4691 2.0395 

0.0000092859 ± 76.05% 0.0000355871 ± 15.40% 0.0000071070 ± 94.15% 
0.0335580189 ± 105.90 0.0002587115 ± 46.60% 0.0087936575 ± 136.13% 
1.8508165307 ± 2.48% 2.2768744065 ± 1.60% 2.0786768130 ± 3.60% 
1.6148 1.4590 2.0246 

(6) (72(1 + k4Xi + kSX;6) 

(7) (72(1 + k7Xi)2 
(72 

k7 
Index 

0.0000245865 ± 546.50%Failed to Converge 
0.0001038379 ± 3435.45% 
0.0188104554 ± 249.33% 
1.8090922646 ± 2.60% 
1.6156 

0.0000709019 ± 323.98% 
0.0340003667 ± 722.62% 
0.0010203108 ± 303.92% 
2.0635489560 ± 3.75% 
2.0244 

0.0032585491 ± 36.83% 0.0000098771 ± 365.77%0.0000264230 ± 171.57% 
0.0048798543 ± 19.58% 0.1085907907 ± 183.74%0.0690150212 ± 86.50% 
1.6229 1.4725 2.0277 
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TABLE 2. Standard errors for model-based (MB) and standard errors and bias for design
based (DB) simulations. Standard errors are expressed as a percentage of the model-based and 
design-based (OLS) standard error. The bias is expressed as a percentage of total tree volume. 
10,000 simulations performed. 

Model 
(4) (12(x7 1 ) 

MB Standard Error 
DB Standard Error 
DB Bias 

[5] (12(x; + k2X~3) 
MB Standard Error 
DB Standard Error 
DB Bias 

[6] (12(1 + k4xj + k5X;6) 

MB Standard Error 
DB Standard Error 
DB Bias 

[7] (12(1 + k7Xi)2 

MB Standard Error 
DB Standard Error 
DB Bias 

Southeastern Loblolly 

93.8 
79.4 
-0.76 

94.4 
79.2 
-0.79 

93.9 
79.3 
-0.77 

96.9 
78.9 
-0.85 

Southern Loblolly 

86.1 
67.2 
1.81 

86.5 
66.8 
1.84 

No convergence 

84.9 
67.1 
1.59 

White Oak 

78.4 
62.1 
0.17 

79.0 
61.6 
0.17 

78.9 
61.7 
0.17 

78.5 
61.9 
0.05 
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4. RECOMMENDATIONS 

Since there is little difference in the goodness of fit between the four variance models studied, we 
recommend variance model (4) where kl ;::::: 1.8 - 2.1. For simplicity, the value kl = :2 is an attractive choice 
as also noted by Cunia (1964). 
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