277 research outputs found

    Deep-sea sponge derived environmental DNA analysis reveals demersal fish biodiversity of a remote Arctic ecosystem

    Get PDF
    The deep-sea is vast, remote, and largely underexplored. However, methodological advances in environmental DNA (eDNA) surveys could aid in the exploration efforts, such as using sponges as natural eDNA filters for studying fish biodiversity. In this study, we analyzed the eDNA from 116 sponge tissue samples and compared these to 18 water eDNA samples and visual surveys obtained on an Arctic seamount. Across survey methods, we revealed approximately 30% of the species presumed to inhabit this area and 11 fish species were detected via sponge derived eDNA alone. These included commercially important fish such as the Greenland halibut and Atlantic mackerel. Fish eDNA detection was highly variable across sponge samples. Highest detection rates were found in sponges with low microbial activity such as those from the class Hexactinellida. The different survey methods also detected alternate fish communities, highlighted by only one species overlap between the visual surveys and the sponge eDNA samples. Therefore, we conclude that sponge eDNA can be a useful tool for surveying deep-sea demersal fish communities and it synergises with visual surveys improving overall biodiversity assessments. Datasets such as this can form comprehensive baselines on fish biodiversity across seamounts, which in turn can inform marine management and conservation practices in the regions where such surveys are undertaken.publishedVersio

    Adatoms in Graphene

    Full text link
    We review the problem of adatoms in graphene under two complementary points of view, scattering theory and strong correlations. We show that in both cases impurity atoms on the graphene surface present effects that are absent in the physics of impurities in ordinary metals. We discuss how to observe these unusual effects with standard experimental probes such as scanning tunneling microscopes, and spin susceptibility.Comment: For the Proceedings of the "Graphene Week 2008" at the ICTP in Trieste, Italy. 8 pages, 8 figure

    Biofilm-inhibiting effect and anti-infective activity of N,C-linked aryl isoquinolines and the use thereof

    Get PDF
    Anti-infective and biofilm-inhibiting activities of aryl isoquinoline-derivatives of the general formulae 1 to 3 Figure US08173673-20120508-C00001 are described

    FYCO1 Increase and Effect of Arimoclomol–Treatment in Human VCP–Pathology

    Get PDF
    Dominant VCP–mutations cause a variety of neurological manifestations including inclusion body myopathy with early–onset Paget disease and frontotemporal dementia 1 (IBMPFD). VCP encodes a ubiquitously expressed multifunctional protein that is a member of the AAA+ protein family, implicated in multiple cellular functions ranging from organelle biogenesis to ubiquitin–dependent protein degradation. The latter function accords with the presence of protein aggregates in muscle biopsy specimens derived from VCP–patients. Studying the proteomic signature of VCP–mutant fibroblasts, we identified a (pathophysiological) increase of FYCO1, a protein involved in autophagosome transport. We confirmed this finding applying immunostaining also in muscle biopsies derived from VCP–patients. Treatment of fibroblasts with arimoclomol, an orphan drug thought to restore physiologic cellular protein repair pathways, ameliorated cellular cytotoxicity in VCP–patient derived cells. This finding was accompanied by increased abundance of proteins involved in immune response with a direct impact on protein clearaqnce as well as by elevation of pro–survival proteins as unravelled by untargeted proteomic profiling. Hence, the combined results of our study reveal a dysregulation of FYCO1 in the context of VCP–etiopathology, highlight arimoclomol as a potential drug and introduce proteins targeted by the pre–clinical testing of this drug in fibroblasts

    Molecular characterization of the symbionts associated with marine nematodes of the genus Robbea‡

    Get PDF
    Marine nematodes that carry sulfur-oxidizing bacteria on their cuticle (Stilbonematinae, Desmodoridae) migrate between oxidized and reduced sand layers thereby supplying their symbionts with oxygen and sulfide. These symbionts, in turn, constitute the worms' major food source. Due to the accessibility, abundance and relative simplicity of this association, stilbonematids may be useful to understand symbiosis establishment. Nevertheless, only the symbiont of Laxus oneistus has been found to constitute one single phylotype within the Gammaproteobacteria. Here, we characterized the symbionts of three yet undescribed nematodes that were morphologically identified as members of the genus Robbea. They were collected at the island of Corsica, the Cayman Islands and the Belize Barrier Reef. The surface of these worms is covered by a single layer of morphologically undistinguishable bacteria. 18S rDNA-based phylogenetic analysis showed that all three species belong to the Stilbonematinae, although they do not form a distinct cluster within that subfamily. 16S rDNA-based analysis of the symbionts placed them interspersed in the cluster comprising the sulfur-oxidizing symbionts of L. oneistus and of marine gutless oligochaetes. Finally, the presence and phylogeny of the aprA gene indicated that the symbionts of all three nematodes can use reduced sulfur compounds as an energy source

    Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts

    Get PDF
    Marine sponges contain complex bacterial communities of considerable ecological and biotechnological importance, with many of these organisms postulated to be specific to sponge hosts. Testing this hypothesis in light of the recent discovery of the rare microbial biosphere, we investigated three Australian sponges by massively parallel 16S rRNA gene tag pyrosequencing. Here we show bacterial diversity that is unparalleled in an invertebrate host, with more than 250 000 sponge-derived sequence tags being assigned to 23 bacterial phyla and revealing up to 2996 operational taxonomic units (95% sequence similarity) per sponge species. Of the 33 previously described ‘sponge-specific’ clusters that were detected in this study, 48% were found exclusively in adults and larvae – implying vertical transmission of these groups. The remaining taxa, including ‘Poribacteria’, were also found at very low abundance among the 135 000 tags retrieved from surrounding seawater. Thus, members of the rare seawater biosphere may serve as seed organisms for widely occurring symbiont populations in sponges and their host association might have evolved much more recently than previously thought

    Novel insights into PORCN mutations, associated phenotypes and pathophysiological aspects.

    Get PDF
    BACKGROUND: Goltz syndrome (GS) is a X-linked disorder defined by defects of mesodermal- and ectodermal-derived structures and caused by PORCN mutations. Features include striated skin-pigmentation, ocular and skeletal malformations and supernumerary or hypoplastic nipples. Generally, GS is associated with in utero lethality in males and most of the reported male patients show mosaicism (only three non-mosaic surviving males have been described so far). Also, precise descriptions of neurological deficits in GS are rare and less severe phenotypes might not only be caused by mosaicism but also by less pathogenic mutations suggesting the need of a molecular genetics and functional work-up of these rare variants. RESULTS: We report two cases: one girl suffering from typical skin and skeletal abnormalities, developmental delay, microcephaly, thin corpus callosum, periventricular gliosis and drug-resistant epilepsy caused by a PORCN nonsense-mutation (c.283C > T, p.Arg95Ter). Presence of these combined neurological features indicates that CNS-vulnerability might be a guiding symptom in the diagnosis of GS patients. The other patient is a boy with a supernumerary nipple and skeletal anomalies but also, developmental delay, microcephaly, cerebral atrophy with delayed myelination and drug-resistant epilepsy as predominant features. Skin abnormalities were not observed. Genotyping revealed a novel PORCN missense-mutation (c.847G > C, p.Asp283His) absent in the Genome Aggregation Database (gnomAD) but also identified in his asymptomatic mother. Given that non-random X-chromosome inactivation was excluded in the mother, fibroblasts of the index had been analyzed for PORCN protein-abundance and -distribution, vulnerability against additional ER-stress burden as well as for protein secretion revealing changes. CONCLUSIONS: Our combined findings may suggest incomplete penetrance for the p.Asp283His variant and provide novel insights into the molecular etiology of GS by adding impaired ER-function and altered protein secretion to the list of pathophysiological processes resulting in the clinical manifestation of GS

    Biological Characterisation of Haliclona (?gellius) sp.: Sponge and Associated Microorganisms

    Get PDF
    We have characterised the northern Pacific undescribed sponge Haliclona (?gellius) sp. based on rDNA of the sponge and its associated microorganisms. The sponge is closely related to Amphimedon queenslandica from the Great Barrier Reef as the near-complete 18S rDNA sequences of both sponges were identical. The microbial fingerprint of three specimens harvested at different times and of a transplanted specimen was compared to identify stably associated microorganisms. Most bacterial phyla were detected in each sample, but only a few bacterial species were determined to be stably associated with the sponge. A sponge-specific β- and γ-Proteobacterium were abundant clones and both of them were present in three of the four specimens analysed. In addition, a Planctomycete and a Crenarchaea were detected in all sponge individuals. Both were closely related to operational taxonomic units that have been found in other sponges, but not exclusively in sponges. Interestingly, also a number of clones that are closely related to intracellular symbionts from insects and amoeba were detected
    corecore