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Abstract
The deep-sea is vast, remote, and largely underexplored. However, methodological 
advances in environmental DNA (eDNA) surveys could aid in the exploration efforts, 
such as using sponges as natural eDNA filters for studying fish biodiversity. In this 
study, we analyzed the eDNA from 116 sponge tissue samples and compared these to 
18 water eDNA samples and visual surveys obtained on an Arctic seamount. Across 
survey methods, we revealed approximately 30% of the species presumed to inhabit 
this area and 11 fish species were detected via sponge derived eDNA alone. These 
included commercially important fish such as the Greenland halibut and Atlantic 
mackerel. Fish eDNA detection was highly variable across sponge samples. Highest 
detection rates were found in sponges with low microbial activity such as those from 
the class Hexactinellida. The different survey methods also detected alternate fish 
communities, highlighted by only one species overlap between the visual surveys and 
the sponge eDNA samples. Therefore, we conclude that sponge eDNA can be a useful 
tool for surveying deep-sea demersal fish communities and it synergises with visual 
surveys improving overall biodiversity assessments. Datasets such as this can form 
comprehensive baselines on fish biodiversity across seamounts, which in turn can 
inform marine management and conservation practices in the regions where such sur-
veys are undertaken.
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1  |  INTRODUC TION

Environmental DNA (eDNA) is genetic material obtained directly 
from environmental samples without any obvious signs of biological 
source material (Thomsen & Willerslev, 2015). Biodiversity assess-
ment by the analysis of eDNA is now commonly used through-
out baseline data collection and conservation projects (Beng & 
Corlett, 2020; Mauvisseau et al., 2020; Miya, 2022; Shen et al., 2022; 
West et al., 2020). Over the past decade, projects assessing species 
diversity and presence/absence through the use of eDNA has in-
creased exponentially (Beng & Corlett, 2020). The wide applicability 
of how detection of eDNA can be used for assessing biodiversity, 
and to some extent abundance, of many species across a range of 
habitats makes it an attractive approach (Grant et al., 2021; Jeunen 
et al., 2019; Sard et al., 2019; Stat et al., 2017). The success of bio-
diversity assessments through eDNA is arguably down to its non-
invasive nature, cost effectiveness, and scope for generating large, 
repeatable data sets (Mauvisseau et al., 2019; Stoeckle et al., 2021).

However, there is a large uncertainty around eDNA sampling 
efficiency and accuracy, a result which often returns alternate com-
munity diversity profiles compared to profiles obtained from more 
traditional survey methods (Mathieu et al., 2020; Polanco Fernández 
et al., 2021; Valdivia-Carrillo et al., 2021). Further uncertainties can 
arise from variation in sampling effort (e.g., filter type, number of 
replicates), and the risk of sample contamination (Burian et al., 2021; 
Klepke et al., 2022; Lynggaard et al., 2022). Researchers therefore 
attempt to improve various steps in the protocol of how species 
can be detected through eDNA. For example, an ‘Environmental 
Sample Processor’ has been suggested to speed up sample collec-
tion and appears able to monitor marine species in situ (Hansen 
et al.,  2020). However, passive filtration methods are thought to 
offer an alternative to direct physical sampling of the water source 
(Bessey et al., 2021; Jeunen et al., 2022; Kirtane et al., 2020; Verdier 
et al., 2022).

A different filtering approach, aimed at tackling some of these 
challenges associated with eDNA sampling could be the proposed 
utilization of naturally filtering organisms such as sponges (phylum 
Porifera) or bivalves (phylum Mollusca; Jeunen et al., 2021; Mariani 
et al.,  2019; Turon et al.,  2020). In a pioneering study, Mariani 
et al.  (2019) used nine marine sponge samples to assess their po-
tential as natural eDNA samplers. Turon et al.  (2020) further vali-
dated this concept, by metabarcoding 16 different sponge species 
collected on shallow water tropical reefs in marine protected areas 
in Vietnam, and in doing so identified 90 tropical fish species. This 
corresponded to one third of the diversity reported in the area. 
They also documented environmental variables driving differential 
eDNA capture and found significant differences in the detection 
of eDNA from fish when comparing eutrophic and well-preserved 
environments. However, no differences were linked to sponge tax-
onomy or to morphology. This latter result is interesting as different 
sponge species are known to filter water at different rates (Weisz 
et al., 2008), and sponge morphology has been shown to influence 
the ability to capture or retain particles within their tissues (Kahn 

et al., 2015; Morganti et al., 2019). The latest study on sponge eDNA 
conducted a controlled experimental study in aquaria to test exactly 
this (Cai et al., 2022). In contrast to Turon et al., they did identify 
differences in fish eDNA detection across sponge species and this 
was argued to be due to the filtering efficiency and/or microbial ac-
tivity of the sponges (Cai et al., 2022; Turon et al., 2020). Sponge 
species can be classified as high microbial abundance (HMA) or low 
microbial abundance (LMA) species (Moitinho-Silva et al.,  2017). 
HMA sponges have lower pumping rates than LMA sponges, in some 
cases 52%–94% lower filtration (Weisz et al., 2008), suggesting that 
LMA sponges might be more ideal for eDNA filtration and subse-
quent detection. The degradation rates of eDNA in sponges have 
also been shown to be variable between species (Cai et al., 2022). 
Some species of sponges mirror the degradation rates of eDNA in 
the water column, while others retain eDNA traces for longer peri-
ods (up to 72 h; Cai et al., 2022). The use of sponges as natural filters 
therefore seems promising; however, the extent to which it can be 
applied to more extreme and remote ecosystems necessitates fur-
ther investigations.

The deep-sea, i.e., the water column and seafloor below 200 m, 
is the largest biome and likely the least explored on our planet 
(Ramirez-Llodra et al., 2010). Its limited accessibility compounded by 
the high costs of survey time and exploration tools has led to less 
than 0.0001% of the benthic surface of the deep-sea having been 
surveyed (Danovaro et al., 2020; Howell et al., 2021). Furthermore, 
much of the Arctic deep-sea has never been explored and the com-
munities residing there are understudied due to the particularly chal-
lenging conditions that make sampling difficult in this region. Despite 
our limited understanding of these realms, the ecosystems and many 
of the inhabiting species are under increasing pressure from human 
impacts and the effects of climate change (Danovaro et al.,  2020; 
Levin & Le Bris, 2015; Morato et al., 2020; Pham et al., 2019).

The Schulz Bank, located on the Arctic Mid-Ocean Ridge (AMOR), 
is an Arctic seamount selected as a case study site in scope of the 
EU-funded Horizon 2020 SponGES project. Having been surveyed 
annually from 2016 to 2019 using several observational and physical 
sampling tools, this seamount has now been characterized in a sig-
nificant amount of detail. In summary, we know about its biological 
communities (Meyer et al., 2019, 2022), their recovery from trawl-
ing impacts (Morrison et al.,  2020), the microbial diversity (Busch 
et al., 2022; Busch, Hanz, et al., 2020), oceanographic conditions and 
dynamics (Hanz et al., 2021, 2022; Roberts et al., 2018), as well as 
an understanding of ecological functioning in the region (Maldonado 
et al., 2021). These surveys revealed the seamount summit and slope, 
hosts an array of vulnerable marine ecosystems (VMEs)—most no-
tably the impressive sponge grounds. These are dominated by var-
ious species of habitat-forming sponges (classes Hexactinellida and 
Demospongiae). However, while these sponge communities are 
relatively well-known (Meyer et al., 2022), the fish diversity is only 
known from limited observations using Autonomous Underwater and 
Remotely Operated Vehicles (AUVs/ROVs). Despite this, the Schulz's 
sponge grounds have been hypothesized to serve as habitat and po-
tential nursery for many fish (Meyer et al., 2019), therefore providing 
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    |  3BRODNICKE et al.

important ecosystem functions as also observed in sponge VMEs in 
other areas (Hawkes et al., 2019; Kenchington et al., 2013).

Understanding fish communities in this region is important on 
several levels. Most notably, one of economic importance. The 
global fishing fleet has been increasing their fishing depth and 
reach poleward in the pursuit of new fishing grounds and stock—
especially catching Greenland halibut (Reinhardtius hippoglossoides 
(Walbaum, 1792)) and Beaked redfish (Sebastes mentella Travin, 
1951; Christiansen et al.,  2014; Jørgensen et al.,  2020; Victorero 
et al., 2018; Villasante et al., 2012). The most northern commercial 
fisheries in the Barents Sea have an estimated annual landed value 
of 15–20 billion NOK (Jørgensen et al., 2020), a number which un-
derlines the economic importance of the fish residing in these Arctic 
waters. Furthermore, redfish have been observed to utilize dense 
epifauna habitats as breeding grounds (Auster, 2005), emphasizing 
that this ecosystem could be of importance for recruitment of valu-
able fish stock. Therefore, it is important to assess what diversity 
of commercially important fish in particular are present at these 
sponge grounds, enabling or facilitating monitoring and protection 
of this habitat as nursing and feeding grounds.

We therefore aimed to (i) investigate if eDNA extracted from 
sponges collected from the Schulz sponge grounds could be used 
to assess the fish diversity in the area, (ii) test if detection probabil-
ity was driven by particular sponge traits (growth form, systematics, 
and HMA/LMA condition), and (iii) compare the results obtained 
with different observation methods (sponge eDNA, water eDNA, 
and in-situ observations made with a ROV).

2  |  METHODS

2.1  |  Study area

The Schulz Bank (73°52′ N 7°30′ E) lies at the transitional point 
between the Mohn and Knipovich Ridges and at the eastern edge 
of the Greenlandic basin at the interface between the Greenland, 
Iceland, and Norwegian Seas (Hopkins, 1991; Figure 1). Schulz Bank 
is influenced by three water masses that occur in these seas: the 
Norwegian Atlantic Water above the seamount, the Norwegian 
Arctic Intermediate Water at the summit and slopes, and the 
Norwegian Deep Water on the slopes and base (Hopkins,  1991; 
Jeansson et al., 2017; Roberts et al., 2018). The summit sits at 580 m 
below the surface and hosts a dense sponge ground. A geodiid-
dominated community covers the seamount's steeply sloping bed-
rock walls until reaching the seafloor at around 2700 m depth (Meyer 
et al., 2022).

2.2  |  Sample collection

We sampled 116 individual sponges from 16 different species (n = 2–
17) using the remotely operated vehicle (ROV) Ægir 6000 (University 
of Bergen), across two cruises conducted between 2017 and 2018 
on board the Norwegian research vessel G. O. Sars (GS2017110 and 
GS2018108). These included representatives of three sponge classes 
(Hexactinellida, Demospongiae, and Calcarea) and 12 families with 

F I G U R E  1  Topographic map of the sampling locations on Schulz Bank on the Arctic Mid-Ocean Ridge with an inset showing the 
seamount location (red star) relative to Norway, Greenland, and Iceland. Water samples collected above the seafloor are denoted with 
circles, sponge samples collected by remotely operated vehicle (ROV) are denoted with squares, and fish observations made from ROV 
videos are denoted with triangles. Colors represent sampling years: white (2017) and gray (2018). The digital bathymetry for this figure was 
extracted from EMODnet Bathymetry Consortium (2020) and has a resolution of 1/16 × 1/16 arc min. The bathymetry of Schulz Bank was 
provided by the Centre for Deep Sea Research, University of Bergen, Norway.
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4  |    BRODNICKE et al.

various morphologies, and species that are described as LMA and 
HMA sponges (Table 1). The sponges were collected from the sum-
mit (580 m) and the bedrock walls to a depth of 2184 m. Taxonomic 
identifications based on the analysis of external and internal mor-
phological characters were performed both on board and at the 
University of Bergen by sponge taxonomists, and using taxonomic 
literature for the overall boreo-Arctic region (Cárdenas et al., 2013; 
Hestetun et al., 2017). Voucher samples were deposited in the col-
lection of the University Museum of Bergen, after fixation in 99% 
ethanol, and small fragments sent to the Marine Ecology Research 
Division at GEOMAR Helmholtz Centre for Ocean Research.

All 18 seawater samples were collected in 2018, using Rosette-
mounted Niskin bottles, combined with a conductivity-temperature-
depth (CTD) sensor system (SBE 9, Sea-Bird Electronics Inc.). Bottom 
water samples were taken in three biological replicates between 978 
and 2966 m water depth and approximately 10 m above the seafloor. 
For each sample, 2 L of seawater was filtered onto polyvinylidene 
fluoride filter membranes (Merck Millipore) with a pore size of 
0.22 μm and a diameter of 47 mm. The collection data for all sponge 
and water samples can be found at Zenodo (https://zenodo.org) with 
DOI 10.5281/zenodo.7326708.

2.3  |  Video observations

Fish observations were made during six ROV dives in 2017 and 2018 
(GS2017110-23-ROV12, GS2017110-33-ROV-14, GS2017110-
41-ROV-19, GS2018108-19-ROV-12, GS2018108-25-ROV-17, and 

GS2018108-34-ROV-22; Meyer et al.,  2022). The videos selected 
for image analysis were dives that contained dedicated transects 
traversing over large areas (average transect length = 2979 m) with 
limited biological sampling besides occasional periods of opportun-
istic fauna collection. Videos were watched in the VLC media player, 
and images containing fish were extracted from the videos. A total 
of 151 images from 2017 (n = 107) and 2018 (n = 44) were extracted 
from the three video transects. The identification of fish from the 
images was checked and confirmed by experts using taxonomic lit-
erature for the region as a guide (Whitehead et al., 1987).

To ensure comparability with the water eDNA samples, only 
fish observed in 2018 were included in the comparable analysis. 
However, fish observations from 2017 were used to confirm the 
observations made in 2018 and note additional fish species not ob-
served in 2018 to add to the overall number of species detected for 
this ecosystem.

2.4  |  Molecular processing of samples

All samples (seawater filters and sponge tissue samples) were stored 
at −80°C. DNA was extracted from approximately 0.25 g of sponge 
tissue, or from half a seawater filter, using the DNeasy PowerSoil Kit 
(Qiagen), following manufacturer's instructions. DNA extractions 
from filters and sponge tissue were performed days after sampling 
upon arrival at GEOMAR Kiel (i.e., in 2017 and 2018). The quality and 
yield of the extracted DNA was evaluated by NanoDrop spectropho-
tometry. Aliquots of DNA from 134 selected sponge (sponge species 

TA B L E  1  Overview of the 116 sponge samples analyzed in this study.

Species Class Growth form
Microbial 
abundance Depth range (m) Replicates (n)

Amphidiscella monai Hexactinellida Stalked LMA 1729–2184 8

Aphrocallistidae indet. Hexactinellida Vase LMA 2113 4

Caulophacus arcticus Hexactinellida Stalked LMA 1656–2113 2

Cladorhiza sp. Demospongiae Arborescent LMA 1678 3

Clathrina pellucida Calcarea Tubular LMA 2184 4

Craniella infrequens Demospongiae Globular (small) HMA 587–897 17

Craniella zetlandica Demospongiae Globular (small) HMA 587 4

Geodia hentscheli Demospongiae Globular (small) HMA 587–2184 15

Geodia parva Demospongiae Globular (massive) HMA 587–2184 14

Geodia sp. Demospongiae Globular (massive) HMA 587 6

Hexadella dedritifera Demospongiae Encrusting LMA 580–600 5

Lissodendoryx complicata Demospongiae Arborescent LMA 1297 4

Schaudinnia rosea Hexactinellida Vase LMA 580–1316 16

Stelletta rhaphidiophora Demospongiae Globular (massive) HMA 580–2184 4

Stylocordyla borealis Demospongiae Stalked LMA 897–1034 6

Thenea valdiviae Demospongiae Globular (small) LMA 587 4

Note: For each sponge species, class, growth form, microbial abundance (high: HMA, and low: LMA), the depth range (m) of collection and number 
of replicate specimens are listed. For additional collection metadata, see the deposited metadata file at the repository https://zenodo.org with DOI: 
10.5281/zenodo.7326708 (Brodnicke et al., 2022).
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with two or more specimens collected) and water samples were 
analyzed for fish DNA in laboratories designed for work with low 
concentration DNA and with strict cleaning procedures. The pres-
ence of fish DNA in the extracts from sponges and water samples 
was confirmed by amplification of a fragment of the mitochondrial 
12S rRNA gene in a quantitative-PCR (qPCR) setup, using the verte-
brate primer sets MiFish-U targeting bony fish and MiFish-E target-
ing elasmobranchs (Miya et al., 2015). The qPCR setup was prepared 
as 25 μL total reaction volumes comprising 1 μL forward and reverse 
primer (each in concentrations of 10 μM), 2 μL dNTP (25 mM), 0.2 μL 
AmpliTaq gold DNA polymerase (5 u/μL) (Applied Biosystems), 2.5 μL 
PCR Gold buffer (×10) (Applied Biosystems), 0.25 μL BSA (25 mg/mL) 
(Fisher Biotec), 0.5 μL GC enhancer (Applied Biosystems), 2 μL MgCl2 
(25 mM), 1 μL SYBR-green mix (DMSO, SYBR and ROX), 2 μL template 
DNA and 12.55 μL ddH2O. Thermocycler settings were setup for the 
qPCR on an MxPro3005 (Agilent Technologies), with 10 min at 95°C, 
50 cycles of 30 s at 95°C, 30 s at 50°C and 1 min at 72°C, followed by 
5 min at 72°C. The 134 extracts were sent to the sequencing facility 
at the Genome Centre (Barts and the London School of Medicine and 
Dentistry). Here amplicon amplification was performed in triplicates 
of each sample with negative controls. The PCR reactions were set 
up as for the tested qPCR and the same thermocyler settings were 
used. The Amplicons were sequenced to a total of 15 M 250 paired-
end read sequence depth on illumina MiSeq technology.

2.5  |  Data analysis

The 250 paired-end demultiplexed sequences were truncated using 
‘DADA2’, which is based on the DADA algorithm (Rosen et al., 2012), 
by adopting previously published bioinformatic code (Reinholdt 
Jensen et al., 2021). The code was executed in R v4.0.2 using ‘Sickle’ 
v1.33 in which process chimeras were removed (Callahan et al., 2016; 
Joshi & Sickle, 2011; R Core Team, 2022). For ‘sickle’, we set the ‘fastq-
PairedFilter function’ and maxEE value to 100 and 2, respectively, 
and the length and quality to 100 and 28, respectively. The remaining 
sequences were assigned taxonomical identification by adopting pre-
viously published code and using Basic Local Alignment Search Tool 
(BLAST) in ‘blastn’ v.2.8.1 on the National Center for Biotechnology 
Information (NCBI) genbank nucleotide database on 2022-Jan-25 
(Altschul et al.,  1990; Benson,  2004; Frøslev et al.,  2017). We re-
quested a maximum of 2000 identified sequences per sequence sub-
mitted with >90% query coverage and >80% sequence similarity.

Each of the unique taxonomically assigned sequences (2718) 
was further filtered and manually checked for misidentification oc-
curring in the pipeline and the GenBank BLAST function (Ashelford 
et al., 2005). We only kept sequences matching with 100% sequence 
overlap and >98% sequence similarity with the query sequence, 
similar to previous studies with species level taxonomic assignment 
(Sigsgaard et al., 2019). The DNA sequences found in the negative 
controls, non-target sequences which comprised non-chordates, 
domestic animals (common contaminants of eDNA samples both 
in field and during handling; Cai et al., 2022; Klepke et al., 2022; 
Sigsgaard et al., 2019). Fish not known from this geographic region 

were excluded from both water and sponge eDNA data (Appendix 
S1: Table S1). Manual curation that beforehand excludes non-native 
species for the assessed area is commonly done in eDNA studies 
including marine sponge eDNA studies (Cai et al.,  2022; Turon 
et al., 2020). Sequence reads equally similar (same % sequence sim-
ilarity) to several taxa, the taxa matching the geographic and deep-
sea region was assigned to the sequence read.

The resulting species occurrence data from sponge tissue sam-
ples, filtered water samples and video were processed in R v4.1.2 (R 
Core Team, 2022). The presence/absence data was modeled as the 
presence of a fish given the species of sponge with a generalized 
linear model (GLM) with a binomial distribution fitting presence/ab-
sence data. This was done using the ‘glm’ function that includes the 
interaction effect between fish and sponge species. The detection 
probability of a fish given the fish occurrence and sponge species 
were extracted on the response scale of the model (0-1). Difference 
in fish detection by sponge species and grouped by: microbial activ-
ity (HMA or LMA), sponge growth form, sponge taxonomic ranks, 
expedition year and observation method (water eDNA, sponge 
eDNA and video observations) were also calculated by estimated 
marginal means from the fitted models including those variables. We 
grouped the sponges based on their microbial abundance (high and 
low), which is linked to ecological relevance (Morganti et al., 2020; 
Weisz et al., 2008). However, although there was relatively even dis-
tribution of HMA and LMA sponges in our sample set, the opportu-
nistic nature of the sampling meant this was not designed or planned 
with any such accuracy and interpretation of the results should be 
taken with this in mind. The classification of microbial abundance 
are based on Busch et al.  (2022) and Busch, Beazley, et al.  (2020). 
The significant differences between sponge species, sampling years 
and observation methods were assessed by pairwise comparisons. 
Figures were prepared with the ggplot2 package (Wickham, 2016), 
the map in ‘ArcGIS’ v10.8.1 and all statistical output can be found in 
Appendix S1: Supplementary Material S1.

3  |  RESULTS

3.1  |  Fish diversity detected by analysis of sponge 
derived eDNA

Eleven fish species were found by eDNA analysis across the 16 
sponge species (Figures  2 and 3). The highest diversity was de-
tected from the sponge Schaudinnia rosea (Fristedt, 1887) (seven 
fish species), followed by Geodia parva (Hansen, 1885) (five fish 
species) and Amphidiscella monai (Tabachnick and Lévi, 1997) (four 
fish species). Pairwise comparison (between the sponge species) 
found no significant difference in fish diversity detected (p > 0.05). 
However, A. monai had the highest single fish detection probability 
(0.375), i.e., 37% A. monai sampled were positive for American plaice 
(Hippoglossoides platessoides (Fabricius, 1780)) eDNA. 43.8% of the 
sponge species assessed in this study (or seven of 16) revealed no 
fish eDNA. There was also no significant difference in fish detection 
between sponges sampled in different years (p = 0.98).
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6  |    BRODNICKE et al.

3.2  |  Sponge traits impacting fish eDNA detection

When exploring the impact of microbial abundance in sponges, there 
is a significant difference (p = 0.01) between the eDNA extracted 
from HMA and LMA sponges. LMA sponges have the highest num-
ber of fish species detected and have a higher overall detection prob-
ability (mean: 0.038 ± 0.039 SD, compared to a mean: 0.014 ± 0.017 

SD) when compared to those sponges classified as HMA (Figure 4a). 
This was corroborated by the species accumulation curves for all 16 
species of sponges and revealed a clear improvement of sampling 
efforts targeting LMA sponges (Figure 4b). However, the asymptote 
was not reached for any sponge group suggesting that more fish 
species are likely to be detected with increasing sampling and se-
quencing efforts. Furthermore, even within the LMA sponge group, 

F I G U R E  3  Detection probability (0-1) 
of fish eDNA in 16 species of deep-sea 
sponges across the sampling years 2017 
and 2018. Gray: 0 detection probability. 
Right bar indicates the high or low 
microbial abundance (HMA/LMA) status 
of the sponge species.

F I G U R E  2  Representative images of eight of the fish species observed across the two cruises in the ROV video footage. (a) Macrourus 
berglax, (b) Amblyraja hyperborea, (c) Reinhardtius hippoglossoides, (d) Gaidropsarus argentatus, (e) Lycenchelys platyrhina, (f) Lycodes frigidus, (g) 
Paraliparis bathybius, and (h) Rhodichthys regina. Scale bars in each panel represents the laser distance of 16 cm.
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the detection probability of fish eDNA from sponge tissue was 
rather low (<0.15). Across all 16 sponge species, American plaice and 
Roughhead grenadier (Macrourus berglax (Lacepède, 1801)) were the 
most commonly detected fish and Witch flounder (Glyptocephalus 
cynoglossus (Linnaeus, 1758)), Greater eelpout (Lycodes esmarkii 
Collett, 1875), Lanternfish (Protomyctophum arcticum (Lütken, 1892)) 
and Greenland halibut the least. Of note, we were also able to de-
tect the Minke whale (Balaenoptera acutorostrata (Lacépède, 1804)) 
in eDNA of the sponge, Lissodendoryx (Lissodendoryx) complicata 
(Hansen, 1885) (data not shown).

On class level, Hexactinellida sponges had the highest detec-
tion probability and was significantly different from Demospongiae, 
which showed the lowest (p = 0.0014) (Material  S1: Figure  S1a). 
No differences were found on family or order level (p > 0.05). 
Furthermore, sponge growth form did not influence fish detection 
probability (p > 0.05). Nevertheless, encrusting, stalked, tubular, and 
vase forms had similarly high detection, while globular growth forms 
had the lowest detection (Material S1: Figure S1b). Arborescent spe-
cies always failed to reveal any fish detection.

3.3  |  Comparing fish diversity 
assessment approaches

We detected 17 fish species across all three detection approaches 
and sampling years (2017 and 2018). Comparing detection methods 
in year 2018, we detect a significant difference (p < 0.0001) between 
the number of fish observed in videos and those detected by eDNA 
in filtered water. Surprisingly, water eDNA only detected a maximum 
of one species per sample (Figure 5a). To summarize, nine species 
were detected in the sponge tissue (several species detected in 
some samples), six with ROV and three in water eDNA (Figure 5b). 
There was little overlap between survey approaches and were no 
species which were detectable across all three approaches. Only 
American plaice was found in both the water eDNA samples and 
the sponge eDNA samples and Roughhead grenadier was found in 
both the sponge eDNA samples and observed on video. Greenland 
halibut have been observed in video footage from 2017 and was 
likely present in 2018 but not filmed in that year. The ROV from 
2018 detected: Arctic skate (Amblyraja hyperborea (Collett, 1879)), 

F I G U R E  4  (a) The detection probability of fish species in sponges across the surveyed area grouped by microbial abundance; high and 
low. Horizontal bars are 95% confidence intervals, a single dot is no detection, and the blue vertical lines are mean probability for each 
group. (b) Fish eDNA detection curves based on LMA (low microbial abundance) sponges (green, top), all sponges (blue, middle), HMA (high 
microbial abundance) sponges (purple, bottom).
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Arctic rockling Gaidropsarus argentatus (Reinhardt, 1837), Glacial 
eelpout (Lycodes frigidus Collett, 1879), Roughhead grenadier, Black 
seasnail (Paraliparis bathybius (Collett, 1879)) and Threadfin seasnail 
(Rhodichthys regina Collett, 1879). Lycenchelys platyrhina (Jensen, 
1902) and Greenland halibut were instead noted in the ROV dives 
from 2017.

4  |  DISCUSSION

eDNA is a cost-effective way to detect species and shows promise 
for conservation practices and to inform marine protection meas-
ures (Grant et al., 2021; Mauvisseau et al., 2020; Shen et al., 2022; 
Thomsen & Willerslev,  2015). The eDNA approach has already 
been applied widely in the marine realm, including hard to reach 
areas such as the deep (Brandt et al., 2021; Miya, 2022). More re-
cently, the concept of extracting eDNA from ‘natural filters’ such 
as sponges has been proposed (Cai et al., 2022; Mariani et al., 2019; 
Turon et al., 2020) and warrants further investigation to understand 
its practicality.

Here, we assessed the potential of using eDNA extracted from 
deep-sea Arctic marine sponges to assess demersal fish communi-
ties, in the context of a remote deep-sea ecosystem, the Schulz Bank. 
This was successful, and we identified the presence of 11 fish species 
through sponge derived eDNA. We believe, this observed number of 
species corresponds approximately to 19% of the fish species known 
to inhibit this part of the Arctic (i.e., the 57 species previously de-
scribed; Christiansen & Reist, 2013; Møller et al., 2010). This is proba-
bly a cautious statistic, as the fish diversity at Schulz Bank specifically 
would likely be lower—yet this remains unknown. Indeed, only three 

species have previously been recorded at this location using AUV/
ROVs imagery (Meyer et al., 2019). If we take this value, this current 
study has therefore almost quadrupled the known number of fish spe-
cies for this site. Interestingly, our percentage species detection in the 
Arctic deep-sea is comparable with the percentage of species detec-
tion from sponge eDNA from shallow tropical coral reefs (compared 
to visual surveys; Turon et al., 2020). This points to the fact that eDNA 
extracted from deep-sea sponges will be a useful approach for marine 
biodiversity assessment of the deep moving forward.

We further show that sponges with low microbial abundance 
(LMA) have (on average), higher fish detection probability than 
sponges with high microbial abundance (HMA). Out of the 16 sponge 
species sampled, Amphidiscella monai revealed the highest detec-
tion probability for a single fish species. This could be attributed 
to A. monai LMA status which may translate into slower DNA deg-
radation (Busch et al.,  2022; Moitinho-Silva et al.,  2017; Zulkefli 
et al., 2019). In support of this, we also find that when focusing only 
on LMA sponge species, detection per sponge sampled is greatly im-
proved. Additionally, LMA sponge species detect a wider array of 
fish species. This could also be a result of the higher than average 
pumping rates, or better particle retention—both often reported 
in LMA sponge species (Kahn et al.,  2015; Morganti et al.,  2019; 
Weisz et al., 2008). Although, A. monai gave the highest fish detec-
tion probability, Schaudinnia rosea, displayed the widest diversity of 
fish in its eDNA. This may point to some sponge species being more 
optimal for eDNA sampling, i.e., a species that retains more eDNA 
from their surroundings than others. Indeed, this was supported 
by our results showing sponges from the class Hexactinellida, by 
and large, retained the most eDNA. This may mean certain taxo-
nomic groups should be targeted for this type of research. However, 

F I G U R E  5  (a) Frequency of fish observation in the three observation approaches compared in 2018. Video observations correspond to 
remotely operated vehicle transects. (b) Venn diagram of fish species detected in each of three observation approaches used during 2018. 
Colors of species names represent the approach color (water eDNA (blue), sponge eDNA (green), or video observations (purple)) or shared 
color with neighboring observation approach.
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all the Hexactinellida sponges investigated in this study were also 
LMAs—so we cannot detangle these two factors re optimum eDNA 
retention. The finding that certain species outperform others has 
been shown before (Cai et al., 2022; Turon et al., 2020). In this re-
gard, we also show an inability to retrieve eDNA from seven sponge 
species assessed. This result importantly suggests which sponges 
not to target for future sponge eDNA studies.

In total, we were able to identify 17 fish species at Schulz Bank—
this was across the 2 years and the different methods. This equates 
to almost 30% of the estimated diversity of the region (Christiansen 
& Reist, 2013; Møller et al., 2010). However, there was low overlap 
in species detection between ROV observations and the eDNA sam-
ples. This was not completely unexpected, as Turon et al. presented 
similar results between sponge eDNA and visual surveys of the 
fish communities inhabiting coral reefs (Turon et al., 2020). Indeed, 
sponge eDNA has already been shown to more commonly detect 
vagrant fish species (Turon et al., 2020). In our study, more pelagic 
fish such as Atlantic mackerel (Scomber scombrus Linnaeus, 1758), 
Atlantic salmon (Salmo salar Linnaeus, 1758) and Lanternfish were 
found in sponge eDNA than in the water samples or the ROV videos. 
Another explanation to this lack of overlap between survey methods 
and the greater number of fish being detected by the sponge eDNA 
samples may be due to the sponges ability to retain filtered eDNA 
for periods of days or weeks (Cai et al., 2022).

However, despite performing better, the same lack of overlap be-
tween sponge eDNA and the visual survey means that one cannot 
rely on the use of eDNA alone. Even the two types of eDNA sam-
ples (sponge and water) shared only one species between them. This 
may be explained due to a methodological aspect of the sampling. 
Sponges are likely to filter the water in the benthic boundary layer, 
while the water eDNA was collected from 10 m above the seafloor. 
That said, they both detected pelagic and demersal fish species, so 
this suggest that any effect like this would be minimal. An alternate 
hypothesis explaining this lack of similarity between sample types 
could be due to the nature of the survey site itself and the spatial 
distances between the water and sponge eDNA sampling (Mathieu 
et al.,  2020). Indeed, hydrological investigations at the survey site 
suggests vertical density stratification occurs (Hanz et al.,  2021). 
This could result in reduced water mixing and the effective trap-
ping of shed eDNA on micro- or local-scales (Jeunen et al., 2020). 
Furthermore, stochasticity in eDNA in any water body has also com-
monly been shown to lead to incongruence between samples and 
survey methods and can even be temporally variable (Agersnap 
et al., 2022; Jensen et al., 2022). The later could have larger impacts 
when you consider diurnal vertical migrations of certain fish species 
such as the Lanternfish (Saunders et al., 2015).

Interestingly, within the sponge eDNA samples we observed a 
relatively high probability of finding certain fish species such as the 
American plaice and Roughhead grenadier. Such a result may be in-
dicative of particular high abundances or biomass of these species at 
the survey site (Meyer et al., 2019; Salter et al., 2019). Furthermore, 
we were able to detect several commercially important fish spe-
cies using this approach, which may offer an important economic 

use for this survey method. For example, the Greenland halibut, 
Atlantic mackerel and Beaked redfish. Detection of these species 
was certainly not unexpected as redfish are known to use structures 
like sponges and corals for their breeding grounds (Auster,  2005). 
However, Greenland halibut are often documented with high abun-
dances at deep-sea sponge grounds, likely attracted due to the prey 
availability or suitable nursery/hatchery grounds (Hogg et al., 2010; 
Kenchington et al., 2013; Klitgaard & Tendal, 2004). In contrast, the 
detection of Arctic skate by sponge eDNA warrants special note. 
This species is of particular interest, as the current status and life-
history of this deep-sea skate is largely unknown (Climent,  2021). 
Our study supports the idea that Schulz Bank may be a key nursery 
ground for this species Arctic skate (Meyer et al.,  2019), and fur-
ther use of sponge eDNA may shed even more light on this deep-sea 
dwelling elasmobranch.

Despite, the interesting findings shown here, eDNA retention 
across all sponge samples was relatively low or highly variable at 
best. We therefore acknowledge that this may point to a possible 
limit regarding the applicability of said approach. That said, there 
are several improvements to the sampling and methodology which 
could be implemented into future studies likely improving reliability. 
For example, the selection of sponges from certain classes, those 
with LMA, higher pumping efficiency, better particle retention, and/
or lower metabolism. Furthermore, sponges have internal environ-
mental and chemical gradients (Hughes et al., 2022). eDNA might be 
better preserved in certain compartments of the sponge. Specifically 
targeting different tissue types could therefore yield more eDNA 
per sample. One final interesting finding from this study was that 
despite the relatively large sample size (n = 116), we did not reach 
the asymptote of the species accumulation curve. This suggests a 
larger number of sponge samples would be necessary to give a full 
representative assessment of the diversity present within this re-
gion. To reach this sample number, without decimating a vulnerable 
ecosystem, sponge bycatch from fisheries could/should be utilized 
instead (Klitgaard & Tendal, 2004).

Our study provides new ecological insights into the fish com-
munity of a vulnerable Arctic deep-sea ecosystem (Danovaro 
et al., 2020; Hogg et al., 2010). This proof-of-concept study also 
provided a robust baseline fish diversity assessment of the sponge 
ground compiling several survey approaches ensuring robust and 
reliable data. Such integrative use of sponge and water eDNA in 
combination with more traditional survey methods such as ROVs 
will be increasingly important tools to inform marine spatial plan-
ning, conservation, and protection of remote, hard to reach areas, 
such as the Schulz Bank (Danovaro et al., 2020). Continued mon-
itoring of such sites may well identify northerly range expansions 
or crashes in populations of key or commercial fish species as the 
impacts of climate change continue (Christiansen et al.,  2014; 
Danovaro et al., 2020).
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