23 research outputs found

    The Production of Epistemic Culture and Agency during a First-Grade Engineering Design Unit in an Urban Emergent School

    Get PDF
    Primary school practices are often bound by traditions that perpetuate compliance and skills-based, decontextualized, rote memorization activities. These histories of practice, prevalent in schools serving mostly Black and Brown children, make it inordinately difficult for students to author themselves as knowledge builders (i.e., with epistemic agency), which is a form of injustice. Engineering is a potentially fertile context to support the creation of epistemic culture, whereby young students’ assets are recognized, named, and leveraged as they create and shape the group’s disciplinary knowledge. The authors investigated this potential. The primary research question was: How do first-grade students in an urban emergent school author themselves as epistemic agents during an engineering design unit? Using a social practice theory lens and ethnographic methods, the authors studied 29 days of a materials engineering unit focusing on the teacher’s epistemic commitments, implicit meanings of knowledge in classroom discourse, and practices that opened space for students’ epistemic agency. Data collection included fieldnotes and video of class activities and teacher and student interviews. Class discussions about the properties and uses of materials yielded a rich context for studying epistemic culture. The teacher’s epistemic commitments included an eschewing of disciplinary silos, recognizing the nonlinear nature of knowledge-building about engineering, and acknowledging children’s thinking as an asset for engineering knowledge production. Examples of students’ discursive moves demonstrating epistemic agency included: reminding others about the relevance of previous lessons to the current topic, mirroring the teacher’s instructional moves, claiming voice, space, time, and material resources for knowledge-building, translating one another’s ideas, and making unsolicited connections to their lives. Young children’s intellectual assets can too easily be overlooked in traditional learning contexts. This study demonstrates the affordances of responsive engineering instruction in recognizing and building on youths’ intellectual curiosity and enthusiasm for substantively contributing to the classroom’s knowledge-generating practices

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Systematic site selection for multispecies monitoring networks

    No full text
    1. The importance of monitoring biodiversity to detect and understand changes throughout time and to inform management is increasingly recognized. Monitoring schemes should be globally unified, spatially integrated across scales, long term, and cost-efficient. 2. We propose a framework to design optimized multispecies-targeted monitoring networks over large areas. The method builds upon previous developments on systematic conservation planning in terms of optimizing resource allocation in space, and comprises seven steps: (a) determine which questions will be addressed, (b) define species to be monitored, (c) compile occurrence data for all defined species, (d) predict the overall distribution of each species, (e) collect relevant environmental data and identify homogeneous strata, (t) set targets for the minimum number of monitoring sites per species and/or stratum and (g) identify optimal monitoring sites. 3. We tested whether the monitoring networks designed with our framework have increased performance when compared to networks obtained with simple-random or stratified-random sampling by using a set of different indicators. To that end, we designed monitoring networks using optimized and non-optimized sampling schemes, applied to a case study in Portugal, where the goal was to design a monitoring network for amphibians and reptiles, to complement the one currently established in Spain. 4. Results allowed us to conclude that monitoring networks designed with our method tend to outperform the non-optimized ones, in terms of higher species diversity (i.e. higher number of species and equity across monitoring sites), higher representation of environmental strata, and particularly higher coverage of rare species, with less survey effort. 5. Synthesis and applications. We developed a framework to allocate monitoring sites for multiple species at broad scales using predictive models and optimization algorithms currently applied in systematic conservation planning. This framework presents field survey cost-efficiency advantages when compared to other standard sampling designs and can significantly contribute to improving the design of monitoring schemes. Thus, we recommend its application to design new multispecies monitoring networks or to extend existing ones
    corecore