25 research outputs found
Firefly genomes illuminate parallel origins of bioluminescence in beetles
Fireflies and their luminous courtships have inspired centuries of scientific study. Today firefly luciferase is widely used in biotechnology, but the evolutionary origin of bioluminescence within beetles remains unclear. To shed light on this long-standing question, we sequenced the genomes of two firefly species that diverged over 100 million-years-ago: the North American Photinus pyralis and Japanese Aquatica lateralis. To compare bioluminescent origins, we also sequenced the genome of a related click beetle, the Caribbean Ignelater luminosus, with bioluminescent biochemistry near-identical to fireflies, but anatomically unique light organs, suggesting the intriguing hypothesis of parallel gains of bioluminescence. Our analyses support independent gains of bioluminescence in fireflies and click beetles, and provide new insights into the genes, chemical defenses, and symbionts that evolved alongside their luminous lifestyle
From gene expression to genetic adaptation : insights into the spatio-temporal dynamics of Alexandrium minutum cryptic species complex
Natural populations face environmental changes. In this context, different responses were evolutionnary selected. Among them are phenotypic plasticity and genetic adaptation. Studying the links between these two types of response is a way to understand population dynamics and to predict how they may respond to a changing environment. In the present Ph.D thesis, I focused on studying these links at several scales (intra- and interspecific), in the cryptic species complex of the microalga Alexandrium minutum, both in vitro and in situ. With respect to phenotypic plasticity, these two closely related species show profound differences, highlighting the links between genetic and ecological divergence. At the intraspecific level, it appears that, when facing abiotic factors variations, populations adjust the expression levels of certain genes (notably involved in motility related functions and intercellular interactions under low-salinity and cold environments). On the other hand, populations show genetic differentiation at both small spatial scale, over time, and when the community changes. To conclude, there is a direct interaction between genetic divergence and changes in gene expression. In addition to asking many questions about the response capabilities of populations, these results highlight how phenotypic plasticity and genetic changes are linked and interact. They offer new perspectives on the mechanisms underlying population responses to their environment.Les populations naturelles sont confrontées à des changements environnementaux. Pour y faire face, différentes réponses ont été sélectionnées au cours de l'évolution. Parmi elles se trouvent la plasticité phénotypique et l'adaptation génétique. Etudier les liens existants entre elles est une manière de comprendre les dynamiques des populations et de prévoir leurs réponses à un environnement changeant. Dans la présente étude, je me suis attaché à étudier ces liens à plusieurs échelles (intra- et interspécifique), chez le complexe d'espèces cryptiques de la micro-algue Alexandrium minutum, et ce à la fois in vitro et in situ. En ce qui concerne la plasticité phénotypique, ces deux espèces proches montrent de profondes différences, soulignant les liens entre divergence génétique et écologique. Au niveau intraspécifique, il apparaît que face à des variations de facteurs abiotiques, les populations ajustent les niveaux d'expression de certains gènes (notamment impliqués dans des fonctions de motilité et d'interactions intercellulaires dans des environnements froids à faible salinité). D'autre part, les populations montrent de la différentiation génétique à la fois à faible échelle spatiale, au cours du temps, et lorsque la communauté change. Pour conclure, il existe une interaction directe entre divergence génétique et changements d'expression de gènes. En plus de poser de nombreuses questions quant aux capacités de réponse des populations, ces résultats soulignent comment plasticité phénotypique et changements génétique sont liés et interagissent. Ils offrent une perspective nouvelle sur les mécanismes qui sous-tendent les réponses des populations à leur environnement
De l’expression des gènes à l’adaptation génétique : aperçu des dynamiques spatio-temporelle chez le complexe d’espèces cryptiques d’Alexandrium minutum
Natural populations face environmental changes. In this context, different responses were evolutionnary selected. Among them are phenotypic plasticity and genetic adaptation. Studying the links between these two types of response is a way to understand population dynamics and to predict how they may respond to a changing environment. In the present Ph.D thesis, I focused on studying these links at several scales (intra- and interspecific), in the cryptic species complex of the microalga Alexandrium minutum, both in vitro and in situ. With respect to phenotypic plasticity, these two closely related species show profound differences, highlighting the links between genetic and ecological divergence. At the intraspecific level, it appears that, when facing abiotic factors variations, populations adjust the expression levels of certain genes (notably involved in motility related functions and intercellular interactions under low-salinity and cold environments). On the other hand, populations show genetic differentiation at both small spatial scale, over time, and when the community changes. To conclude, there is a direct interaction between genetic divergence and changes in gene expression. In addition to asking many questions about the response capabilities of populations, these results highlight how phenotypic plasticity and genetic changes are linked and interact. They offer new perspectives on the mechanisms underlying population responses to their environment.Les populations naturelles sont confrontées à des changements environnementaux. Pour y faire face, différentes réponses ont été sélectionnées au cours de l'évolution. Parmi elles se trouvent la plasticité phénotypique et l'adaptation génétique. Etudier les liens existants entre elles est une manière de comprendre les dynamiques des populations et de prévoir leurs réponses à un environnement changeant. Dans la présente étude, je me suis attaché à étudier ces liens à plusieurs échelles (intra- et interspécifique), chez le complexe d'espèces cryptiques de la micro-algue Alexandrium minutum, et ce à la fois in vitro et in situ. En ce qui concerne la plasticité phénotypique, ces deux espèces proches montrent de profondes différences, soulignant les liens entre divergence génétique et écologique. Au niveau intraspécifique, il apparaît que face à des variations de facteurs abiotiques, les populations ajustent les niveaux d'expression de certains gènes (notamment impliqués dans des fonctions de motilité et d'interactions intercellulaires dans des environnements froids à faible salinité). D'autre part, les populations montrent de la différentiation génétique à la fois à faible échelle spatiale, au cours du temps, et lorsque la communauté change. Pour conclure, il existe une interaction directe entre divergence génétique et changements d'expression de gènes. En plus de poser de nombreuses questions quant aux capacités de réponse des populations, ces résultats soulignent comment plasticité phénotypique et changements génétique sont liés et interagissent. Ils offrent une perspective nouvelle sur les mécanismes qui sous-tendent les réponses des populations à leur environnement
De l’expression des gènes à l’adaptation génétique : aperçu des dynamiques spatio-temporelle chez le complexe d’espèces cryptiques d’Alexandrium minutum
Les populations naturelles sont confrontées à des changements environnementaux. Pour y faire face, différentes réponses ont été sélectionnées au cours de l'évolution. Parmi elles se trouvent la plasticité phénotypique et l'adaptation génétique. Etudier les liens existants entre elles est une manière de comprendre les dynamiques des populations et de prévoir leurs réponses à un environnement changeant. Dans la présente étude, je me suis attaché à étudier ces liens à plusieurs échelles (intra- et interspécifique), chez le complexe d'espèces cryptiques de la micro-algue Alexandrium minutum, et ce à la fois in vitro et in situ. En ce qui concerne la plasticité phénotypique, ces deux espèces proches montrent de profondes différences, soulignant les liens entre divergence génétique et écologique. Au niveau intraspécifique, il apparaît que face à des variations de facteurs abiotiques, les populations ajustent les niveaux d'expression de certains gènes (notamment impliqués dans des fonctions de motilité et d'interactions intercellulaires dans des environnements froids à faible salinité). D'autre part, les populations montrent de la différentiation génétique à la fois à faible échelle spatiale, au cours du temps, et lorsque la communauté change. Pour conclure, il existe une interaction directe entre divergence génétique et changements d'expression de gènes. En plus de poser de nombreuses questions quant aux capacités de réponse des populations, ces résultats soulignent comment plasticité phénotypique et changements génétique sont liés et interagissent. Ils offrent une perspective nouvelle sur les mécanismes qui sous-tendent les réponses des populations à leur environnement.Natural populations face environmental changes. In this context, different responses were evolutionnary selected. Among them are phenotypic plasticity and genetic adaptation. Studying the links between these two types of response is a way to understand population dynamics and to predict how they may respond to a changing environment. In the present Ph.D thesis, I focused on studying these links at several scales (intra- and interspecific), in the cryptic species complex of the microalga Alexandrium minutum, both in vitro and in situ. With respect to phenotypic plasticity, these two closely related species show profound differences, highlighting the links between genetic and ecological divergence. At the intraspecific level, it appears that, when facing abiotic factors variations, populations adjust the expression levels of certain genes (notably involved in motility related functions and intercellular interactions under low-salinity and cold environments). On the other hand, populations show genetic differentiation at both small spatial scale, over time, and when the community changes. To conclude, there is a direct interaction between genetic divergence and changes in gene expression. In addition to asking many questions about the response capabilities of populations, these results highlight how phenotypic plasticity and genetic changes are linked and interact. They offer new perspectives on the mechanisms underlying population responses to their environment
Species specific gene expression dynamics during harmful algal blooms
AbstractHarmful algal blooms are caused by specific members of microbial communities. Understanding the dynamics of these events requires comparing the strategies developed by the problematic species to cope with environmental fluctuations to the ones developed by the other members of the community. During three consecutive years, the meta-transcriptome of micro-eukaryote communities was sequenced during blooms of the toxic dinoflagellate Alexandrium minutum. The dataset was analyzed to investigate species specific gene expression dynamics. Major shifts in gene expression were explained by the succession of different species within the community. Although expression patterns were strongly correlated with fluctuation of the abiotic environment, and more specifically with nutrient concentration, transcripts specifically involved in nutrient uptake and metabolism did not display extensive changes in gene expression. Compared to the other members of the community, A. minutum displayed a very specific expression pattern, with lower expression of photosynthesis transcripts and central metabolism genes (TCA cycle, glucose metabolism, glycolysis…) and contrasting expression pattern of ion transporters across environmental conditions. These results suggest the importance of mixotrophy, cell motility and cell-to-cell interactions during A. minutum blooms.</jats:p
Species specific gene expression dynamics during harmful algal blooms
Harmful algal blooms are caused by specific members of microbial communities. Understanding the dynamics of these events requires comparing the strategies developed by the problematic species to cope with environmental fluctuations to the ones developed by the other members of the community. During three consecutive years, the meta-transcriptome of micro-eukaryote communities was sequenced during blooms of the toxic dinoflagellate Alexandrium minutum. The dataset was analyzed to investigate species specific gene expression dynamics. Major shifts in gene expression were explained by the succession of different species within the community. Although expression patterns were strongly correlated with fluctuation of the abiotic environment, and more specifically with nutrient concentration, transcripts specifically involved in nutrient uptake and metabolism did not display extensive changes in gene expression. Compared to the other members of the community, A. minutum displayed a very specific expression pattern, with lower expression of photosynthesis transcripts and central metabolism genes (TCA cycle, glucose metabolism, glycolysis…) and contrasting expression pattern of ion transporters across environmental conditions. These results suggest the importance of mixotrophy, cell motility and cell-to-cell interactions during A. minutum blooms
Strong population genomic structure of the toxic dinoflagellate Alexandrium minutum inferred from meta‐transcriptome samples
Despite theoretical expectations, marine microeukaryote population are often highly structured and the mechanisms behind such patterns remain to be elucidated. These organisms display huge census population sizes, yet genotyping usually requires clonal strains originating from single cells, hindering proper population sampling. Estimating allelic frequency directly from population wide samples, without any isolation step, offers an interesting alternative. Here we validate the use of meta-transcriptome environmental samples to determine the population genetic structure of the dinoflagellate Alexandrium minutum. Strain and meta-transcriptome based results both indicated a strong genetic structure for A. minutum in Western Europe, to the level expected between cryptic species. The presence of numerous private alleles, and even fixed polymorphism, would indicate ancient divergence and absence of gene flow between populations. Single Nucleotide Polymorphisms (SNPs) displaying strong allele frequency differences were distributed throughout the genome, which might indicate pervasive selection from standing genetic variation (soft selective sweeps). However, a few genomic regions displayed extremely low diversity that could result from the fixation of adaptive de novo mutations (hard selective sweeps) within the populations
Inter- and Intra-Specific Transcriptional and Phenotypic Responses of Pseudo-nitzschia under Different Nutrient Conditions
International audienceUntangling the functional basis of divergence between closely related species is a step toward understanding species dynamics within communities at both the evolutionary and ecological scales. We investigated cellular (i.e., growth, domoic acid production, and nutrient consumption) and molecular (transcriptomic analyses) responses to varying nutrient concentrations across several strains belonging to three species of the toxic diatom genus Pseudo-nitzschia. Three main results were obtained. First, strains from the same species displayed similar transcriptomic, but not necessarily cellular, responses to the experimental conditions. It showed the importance of considering intraspecific diversity to investigate functional divergence between species. Second, a major exception to the first finding was a strain recently isolated from the natural environment and displaying contrasting gene expression patterns related to cell motility and domoic acid production. This result illustrated the profound modifications that may occur when transferring a cell from the natural to the in vitro environment and asks for future studies to better understand the influence of culture duration and life cycle on expression patterns. Third, transcriptomic responses were more similar between the two species displaying similar ecology in situ, irrespective of the genetic distance. This was especially true for molecular responses related to TCA cycle, photosynthesis, and nitrogen metabolism. However, transcripts related to phosphate uptake were variable between species. It highlighted the importance of considering both overall genetic distance and ecological divergence to explain functional divergence between species
Additional file 6: Figure S3. of Comparative paleovirological analysis of crustaceans identifies multiple widespread viral groups
Phylogeny of the Mononegavirales group, based on a multiple amino acid alignment and ML analysis of the Mononegavirales-like nucleocapsid protein. In addition to the EVEs discovered in this study, we added sequences of exogenous viruses from the Mononegavirales group. ML nonparametric bootstrap values (100 replicates) are indicated when > 70. (PDF 92 kb
