22 research outputs found

    Firefly genomes illuminate parallel origins of bioluminescence in beetles

    Get PDF
    Fireflies and their luminous courtships have inspired centuries of scientific study. Today firefly luciferase is widely used in biotechnology, but the evolutionary origin of bioluminescence within beetles remains unclear. To shed light on this long-standing question, we sequenced the genomes of two firefly species that diverged over 100 million-years-ago: the North American Photinus pyralis and Japanese Aquatica lateralis. To compare bioluminescent origins, we also sequenced the genome of a related click beetle, the Caribbean Ignelater luminosus, with bioluminescent biochemistry near-identical to fireflies, but anatomically unique light organs, suggesting the intriguing hypothesis of parallel gains of bioluminescence. Our analyses support independent gains of bioluminescence in fireflies and click beetles, and provide new insights into the genes, chemical defenses, and symbionts that evolved alongside their luminous lifestyle

    De l’expression des gĂšnes Ă  l’adaptation gĂ©nĂ©tique : aperçu des dynamiques spatio-temporelle chez le complexe d’espĂšces cryptiques d’Alexandrium minutum

    No full text
    Natural populations face environmental changes. In this context, different responses were evolutionnary selected. Among them are phenotypic plasticity and genetic adaptation. Studying the links between these two types of response is a way to understand population dynamics and to predict how they may respond to a changing environment. In the present Ph.D thesis, I focused on studying these links at several scales (intra- and interspecific), in the cryptic species complex of the microalga Alexandrium minutum, both in vitro and in situ. With respect to phenotypic plasticity, these two closely related species show profound differences, highlighting the links between genetic and ecological divergence. At the intraspecific level, it appears that, when facing abiotic factors variations, populations adjust the expression levels of certain genes (notably involved in motility related functions and intercellular interactions under low-salinity and cold environments). On the other hand, populations show genetic differentiation at both small spatial scale, over time, and when the community changes. To conclude, there is a direct interaction between genetic divergence and changes in gene expression. In addition to asking many questions about the response capabilities of populations, these results highlight how phenotypic plasticity and genetic changes are linked and interact. They offer new perspectives on the mechanisms underlying population responses to their environment.Les populations naturelles sont confrontées à des changements environnementaux. Pour y faire face, différentes réponses ont été sélectionnées au cours de l'évolution. Parmi elles se trouvent la plasticité phénotypique et l'adaptation génétique. Etudier les liens existants entre elles est une maniÚre de comprendre les dynamiques des populations et de prévoir leurs réponses à un environnement changeant. Dans la présente étude, je me suis attaché à étudier ces liens à plusieurs échelles (intra- et interspécifique), chez le complexe d'espÚces cryptiques de la micro-algue Alexandrium minutum, et ce à la fois in vitro et in situ. En ce qui concerne la plasticité phénotypique, ces deux espÚces proches montrent de profondes différences, soulignant les liens entre divergence génétique et écologique. Au niveau intraspécifique, il apparaßt que face à des variations de facteurs abiotiques, les populations ajustent les niveaux d'expression de certains gÚnes (notamment impliqués dans des fonctions de motilité et d'interactions intercellulaires dans des environnements froids à faible salinité). D'autre part, les populations montrent de la différentiation génétique à la fois à faible échelle spatiale, au cours du temps, et lorsque la communauté change. Pour conclure, il existe une interaction directe entre divergence génétique et changements d'expression de gÚnes. En plus de poser de nombreuses questions quant aux capacités de réponse des populations, ces résultats soulignent comment plasticité phénotypique et changements génétique sont liés et interagissent. Ils offrent une perspective nouvelle sur les mécanismes qui sous-tendent les réponses des populations à leur environnement

    From gene expression to genetic adaptation : insights into the spatio-temporal dynamics of Alexandrium minutum cryptic species complex

    No full text
    Natural populations face environmental changes. In this context, different responses were evolutionnary selected. Among them are phenotypic plasticity and genetic adaptation. Studying the links between these two types of response is a way to understand population dynamics and to predict how they may respond to a changing environment. In the present Ph.D thesis, I focused on studying these links at several scales (intra- and interspecific), in the cryptic species complex of the microalga Alexandrium minutum, both in vitro and in situ. With respect to phenotypic plasticity, these two closely related species show profound differences, highlighting the links between genetic and ecological divergence. At the intraspecific level, it appears that, when facing abiotic factors variations, populations adjust the expression levels of certain genes (notably involved in motility related functions and intercellular interactions under low-salinity and cold environments). On the other hand, populations show genetic differentiation at both small spatial scale, over time, and when the community changes. To conclude, there is a direct interaction between genetic divergence and changes in gene expression. In addition to asking many questions about the response capabilities of populations, these results highlight how phenotypic plasticity and genetic changes are linked and interact. They offer new perspectives on the mechanisms underlying population responses to their environment.Les populations naturelles sont confrontées à des changements environnementaux. Pour y faire face, différentes réponses ont été sélectionnées au cours de l'évolution. Parmi elles se trouvent la plasticité phénotypique et l'adaptation génétique. Etudier les liens existants entre elles est une maniÚre de comprendre les dynamiques des populations et de prévoir leurs réponses à un environnement changeant. Dans la présente étude, je me suis attaché à étudier ces liens à plusieurs échelles (intra- et interspécifique), chez le complexe d'espÚces cryptiques de la micro-algue Alexandrium minutum, et ce à la fois in vitro et in situ. En ce qui concerne la plasticité phénotypique, ces deux espÚces proches montrent de profondes différences, soulignant les liens entre divergence génétique et écologique. Au niveau intraspécifique, il apparaßt que face à des variations de facteurs abiotiques, les populations ajustent les niveaux d'expression de certains gÚnes (notamment impliqués dans des fonctions de motilité et d'interactions intercellulaires dans des environnements froids à faible salinité). D'autre part, les populations montrent de la différentiation génétique à la fois à faible échelle spatiale, au cours du temps, et lorsque la communauté change. Pour conclure, il existe une interaction directe entre divergence génétique et changements d'expression de gÚnes. En plus de poser de nombreuses questions quant aux capacités de réponse des populations, ces résultats soulignent comment plasticité phénotypique et changements génétique sont liés et interagissent. Ils offrent une perspective nouvelle sur les mécanismes qui sous-tendent les réponses des populations à leur environnement

    De l’expression des gĂšnes Ă  l’adaptation gĂ©nĂ©tique : aperçu des dynamiques spatio-temporelle chez le complexe d’espĂšces cryptiques d’Alexandrium minutum

    No full text
    Les populations naturelles sont confrontées à des changements environnementaux. Pour y faire face, différentes réponses ont été sélectionnées au cours de l'évolution. Parmi elles se trouvent la plasticité phénotypique et l'adaptation génétique. Etudier les liens existants entre elles est une maniÚre de comprendre les dynamiques des populations et de prévoir leurs réponses à un environnement changeant. Dans la présente étude, je me suis attaché à étudier ces liens à plusieurs échelles (intra- et interspécifique), chez le complexe d'espÚces cryptiques de la micro-algue Alexandrium minutum, et ce à la fois in vitro et in situ. En ce qui concerne la plasticité phénotypique, ces deux espÚces proches montrent de profondes différences, soulignant les liens entre divergence génétique et écologique. Au niveau intraspécifique, il apparaßt que face à des variations de facteurs abiotiques, les populations ajustent les niveaux d'expression de certains gÚnes (notamment impliqués dans des fonctions de motilité et d'interactions intercellulaires dans des environnements froids à faible salinité). D'autre part, les populations montrent de la différentiation génétique à la fois à faible échelle spatiale, au cours du temps, et lorsque la communauté change. Pour conclure, il existe une interaction directe entre divergence génétique et changements d'expression de gÚnes. En plus de poser de nombreuses questions quant aux capacités de réponse des populations, ces résultats soulignent comment plasticité phénotypique et changements génétique sont liés et interagissent. Ils offrent une perspective nouvelle sur les mécanismes qui sous-tendent les réponses des populations à leur environnement.Natural populations face environmental changes. In this context, different responses were evolutionnary selected. Among them are phenotypic plasticity and genetic adaptation. Studying the links between these two types of response is a way to understand population dynamics and to predict how they may respond to a changing environment. In the present Ph.D thesis, I focused on studying these links at several scales (intra- and interspecific), in the cryptic species complex of the microalga Alexandrium minutum, both in vitro and in situ. With respect to phenotypic plasticity, these two closely related species show profound differences, highlighting the links between genetic and ecological divergence. At the intraspecific level, it appears that, when facing abiotic factors variations, populations adjust the expression levels of certain genes (notably involved in motility related functions and intercellular interactions under low-salinity and cold environments). On the other hand, populations show genetic differentiation at both small spatial scale, over time, and when the community changes. To conclude, there is a direct interaction between genetic divergence and changes in gene expression. In addition to asking many questions about the response capabilities of populations, these results highlight how phenotypic plasticity and genetic changes are linked and interact. They offer new perspectives on the mechanisms underlying population responses to their environment

    Species specific gene expression dynamics during harmful algal blooms

    No full text
    Harmful algal blooms are caused by specific members of microbial communities. Understanding the dynamics of these events requires comparing the strategies developed by the problematic species to cope with environmental fluctuations to the ones developed by the other members of the community. During three consecutive years, the meta-transcriptome of micro-eukaryote communities was sequenced during blooms of the toxic dinoflagellate Alexandrium minutum. The dataset was analyzed to investigate species specific gene expression dynamics. Major shifts in gene expression were explained by the succession of different species within the community. Although expression patterns were strongly correlated with fluctuation of the abiotic environment, and more specifically with nutrient concentration, transcripts specifically involved in nutrient uptake and metabolism did not display extensive changes in gene expression. Compared to the other members of the community, A. minutum displayed a very specific expression pattern, with lower expression of photosynthesis transcripts and central metabolism genes (TCA cycle, glucose metabolism, glycolysis
) and contrasting expression pattern of ion transporters across environmental conditions. These results suggest the importance of mixotrophy, cell motility and cell-to-cell interactions during A. minutum blooms

    Inter- and Intra-Specific Transcriptional and Phenotypic Responses of Pseudo-nitzschia under Different Nutrient Conditions

    No full text
    International audienceUntangling the functional basis of divergence between closely related species is a step toward understanding species dynamics within communities at both the evolutionary and ecological scales. We investigated cellular (i.e., growth, domoic acid production, and nutrient consumption) and molecular (transcriptomic analyses) responses to varying nutrient concentrations across several strains belonging to three species of the toxic diatom genus Pseudo-nitzschia. Three main results were obtained. First, strains from the same species displayed similar transcriptomic, but not necessarily cellular, responses to the experimental conditions. It showed the importance of considering intraspecific diversity to investigate functional divergence between species. Second, a major exception to the first finding was a strain recently isolated from the natural environment and displaying contrasting gene expression patterns related to cell motility and domoic acid production. This result illustrated the profound modifications that may occur when transferring a cell from the natural to the in vitro environment and asks for future studies to better understand the influence of culture duration and life cycle on expression patterns. Third, transcriptomic responses were more similar between the two species displaying similar ecology in situ, irrespective of the genetic distance. This was especially true for molecular responses related to TCA cycle, photosynthesis, and nitrogen metabolism. However, transcripts related to phosphate uptake were variable between species. It highlighted the importance of considering both overall genetic distance and ecological divergence to explain functional divergence between species

    Strong population genomic structure of the toxic dinoflagellate Alexandrium minutum inferred from meta‐transcriptome samples

    No full text
    Despite theoretical expectations, marine microeukaryote population are often highly structured and the mechanisms behind such patterns remain to be elucidated. These organisms display huge census population sizes, yet genotyping usually requires clonal strains originating from single cells, hindering proper population sampling. Estimating allelic frequency directly from population wide samples, without any isolation step, offers an interesting alternative. Here we validate the use of meta-transcriptome environmental samples to determine the population genetic structure of the dinoflagellate Alexandrium minutum. Strain and meta-transcriptome based results both indicated a strong genetic structure for A. minutum in Western Europe, to the level expected between cryptic species. The presence of numerous private alleles, and even fixed polymorphism, would indicate ancient divergence and absence of gene flow between populations. Single Nucleotide Polymorphisms (SNPs) displaying strong allele frequency differences were distributed throughout the genome, which might indicate pervasive selection from standing genetic variation (soft selective sweeps). However, a few genomic regions displayed extremely low diversity that could result from the fixation of adaptive de novo mutations (hard selective sweeps) within the populations

    Strong population genomic structure of the toxic dinoflagellate Alexandrium minutum inferred from meta-transcriptome samples

    No full text
    Despite theoretical expectations, marine microeukaryote population are often highly structured and the mechanisms behind such patterns remain to be elucidated. These organisms display huge census population sizes, yet genotyping usually requires clonal strains originating from single cells, hindering proper population sampling. Estimating allelic frequency directly from population wide samples, without any isolation step, offers an interesting alternative. Here, we validate the use of meta-transcriptome environmental samples to determine the population genetic structure of the dinoflagellate Alexandrium minutum. Strain and meta-transcriptome based results both indicated a strong genetic structure for A. minutum in Western Europe, to the level expected between cryptic species. The presence of numerous private alleles, and even fixed polymorphism, would indicate ancient divergence and absence of gene flow between populations. Single nucleotide polymorphisms (SNPs) displaying strong allele frequency differences were distributed throughout the genome, which might indicate pervasive selection from standing genetic variation (soft selective sweeps). However, a few genomic regions displayed extremely low diversity that could result from the fixation of adaptive de novo mutations (hard selective sweeps) within the populations.The study was funded by PRIMROSE (EC Interreg Atlantic Area EAPA182/2016) and the Brittany Region as part of the Paleoecology of Alexandrium minutum dans la Rade de Brest–MarchĂ© n°2017-90292 project PALMIRA. The authors thank all the participants in the crew of the RV RamĂłn Margalef from the Remedios cruise (Research project—grant number CTM2016-75451-C2-1-R), particularly B. Mourino-Carballido for their support to the sample collection.Peer reviewe

    Evolutionary processes and cellular functions underlying divergence in Alexandrium minutum

    No full text
    Understanding divergence in the highly dispersive and seemingly homogeneous pelagic environment for organisms living as free drifters in the water column remains a challenge. Here, we analyzed the transcriptome wide mRNA sequences, as well as the morphology of 18 strains of Alexandrium minutum, a dinoflagellate responsible for Harmful Algal Blooms worldwide, to investigate the functional bases of a divergence event. Analysis of the joint site frequency spectrum (JSFS) pointed toward an ancestral divergence in complete isolations followed by a secondary contact resulting in gene flow between the two diverging groups, but heterogeneous across sites. The sites displaying fixed SNPs were associated with a highly restricted gene flow and a strong over-representation of non-synonymous polymorphism, suggesting the importance of selective pressures as drivers of the divergence. The most divergent transcripts were homologs to genes involved in calcium/potassium fluxes across the membrane, calcium transduction signal and saxitoxin production. The implication of these results in terms of ecological divergence and build-up of reproductive isolation are discussed. Dinoflagellates are especially difficult to study in the field at the ecological level due to their small size and the dynamic nature of their natural environment, but also at the genomic level due to their huge and complex genome and the absence of closely related model organism. This study illustrates the possibility to identify traits of primary importance in ecology and evolution starting from high throughput sequencing data, even for such organisms

    Additional file 8: Figure S5. of Comparative paleovirological analysis of crustaceans identifies multiple widespread viral groups

    No full text
    Schematic representation of the three EVE loci that are orthologous between the various Armadillidium species. The plain green portion of the loci are similar to a virus. a) A. nasatum Bunyavirus-like EVE 12 is most similar to the Wuhan insect virus 1 RdRp (AJG39261). Its 3’ flank contains a 103-bp interspersed repeat (IR in blue) which is repeated at least 66 times in the A. nasatum genome (average similarity between repeats = 86 %) and a partial ORF similar to a hypothetical protein from Helobdella robusta (in grey). b) A. nasatum Circovirus-like EVE 44 is most similar to the Dragonfly orbiculatus virus rep protein (AFS65301). Its 5’ and 3’ flank contain a dinucleotide microsatellite (in orange) repeated at least 15 and 6 times respectively, that are shared at the exact same position with A. vulgare. c) A. nasatum Circovirus-like EVE 50 is most similar to the rep protein of an Uncultured marine virus (GAC77817).xIts 3’ flank contains a 130-bp interspersed repeat which is repeated at least 13 times in the A. nasatum genome (average similarity between repeats = 91 %), as well as a trinucleotide microsatellite repeated at least 17 times and shared with A. vulgare. The green portions of the loci with slanted black stripes correspond to the rest of the flanking regions, which are not similar to any known sequence. Red arrows indicate the position of forward and reverse PCR primers. (PDF 393 kb
    corecore