135 research outputs found

    Measurement of H<sub>2</sub>O<sub>2</sub> within living drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix

    Get PDF
    Hydrogen peroxide (H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt;) is central to mitochondrial oxidative damage and redox signaling, but its roles are poorly understood due to the difficulty of measuring mitochondrial H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; in vivo. Here we report a ratiometric mass spectrometry probe approach to assess mitochondrial matrix H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; levels in vivo. The probe, MitoB, comprises a triphenylphosphonium (TPP) cation driving its accumulation within mitochondria, conjugated to an arylboronic acid that reacts with H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; to form a phenol, MitoP. Quantifying the MitoP/MitoB ratio by liquid chromatography-tandem mass spectrometry enabled measurement of a weighted average of mitochondrial H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; that predominantly reports on thoracic muscle mitochondria within living flies. There was an increase in mitochondrial H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; with age in flies, which was not coordinately altered by interventions that modulated life span. Our findings provide approaches to investigate mitochondrial ROS in vivo and suggest that while an increase in overall mitochondrial H&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; correlates with aging, it may not be causative

    Mg/Ca-Temperature Calibration of Polar Benthic foraminifera species for reconstruction of bottom water temperatures on the Antarctic shelf

    Get PDF
    Benthic foraminifera Mg/Ca is a well-established bottom water temperature (BWT) proxy used in paleoclimate studies. The relationship between Mg/Ca and BWT for numerous species has been determined using core-top and culturing studies. However, the scarcity of calcareous microfossils in Antarctic shelf sediments and poorly defined calibrations at low temperatures has limited the use of the foraminiferal Mg/Ca paleothermometer in ice proximal Antarctic sediments. Here we present paired ocean temperature and modern benthic foraminifera Mg/Ca data for three species, Trifarina angulosa, Bulimina aculeata, and Globocassidulina subglobosa, but with a particular focus on Trifarina angulosa. The core-top data from several Antarctic sectors span a BWT range of −1.7 to +1.2 °C and constrain the relationship between Mg/Ca and cold temperatures. We compare our results to published lower-latitude core-top data for species in the same or related genera, and in the case of Trifarina angulosa, produce a regional calibration. The resulting regional equation for Trifarina angulosa is Temperature (°C) = (Mg/Ca −1.14 ± 0.035)/0.069 ± 0.033). Addition of our Trifarina angulosa data to the previously published Uvigerina spp. dataset provides an alternative global calibration, although some data points appear to be offset from this relationship and are discussed. Mg-temperature relationships for Bulimina aculeata and Globocassidulina subglobosa are also combined with previously published data to produce calibration equations of Temperature (°C) = (Mg/Ca-1.04 ± 0.07)/0.099 ± 0.01 and Temperature (°C) = (Mg/Ca-0.99 ± 0.03)/0.087 ± 0.01, respectively. These refined calibrations highlight the potential utility of benthic foraminifera Mg/Ca-paleothermometry for reconstructing past BWT in Antarctic margin settings

    Reconstructing Circumpolar Deep Water: A new Mg/Ca-Temperature calibration for the benthic foraminifer Trifarina angulosa around Antarctica

    Get PDF
    The West Antarctic Ice Sheet (WAIS) represents a large potential source of sea level rise. Observations of ice sheet instabilities in the region have increased in recent decades, with a 77% recorded increase in the net loss of glaciers the Amundsen Sea Embayment (ASE) sector of the WAIS since 1973. This has been attributed to increasing basal melting of floating ice shelves caused by warmer Circumpolar Deep Water (CDW) upwelling onto the shelf. Understanding the role of CDW in glacial retreat in the ASE over longer timescales is key to reducing the uncertainty of future sea level predictions. The aim of this research is to reconstruct CDW incursions onto the ASE continental shelf and correlate them to the glacial history of the area since the Last Glacial Maximum. To achieve this, it is crucial to develop a proxy for detecting the presence or absence of CDW. Whilst foraminiferal preservation is rare in this locality due to the corrosive nature of water masses around the Antarctic Peninsula, several cores from the ASE contain specimens including the benthic species Trifarina angulosa, which is a shallow infaunal species therefore ideal for Mg/Ca temperature reconstructions. Here we present a core-top calibration for T. angulosa for temperatures between -1.75°C and +1.5°C from sites situated in the Southern Ocean. We apply this Mg/Ca temperature calibration to down-core archives at several sites, which are well-dated using radiocarbon. The results are presented here along with benthic and planktonic foraminiferal stable isotope data and complementary trace metal data. Keywords: Circumpolar deep water, foraminifera, Mg/C

    Developing common protocols to measure tundra herbivory across spatial scales

    Get PDF
    Understanding and predicting large-scale ecological responses to global environmental change requires comparative studies across geographic scales with coordinated efforts and standardized methodologies. We designed, applied, and assessed standardized protocols to measure tundra herbivory at three spatial scales: plot, site (habitat), and study area (landscape). The plot- and site-level protocols were tested in the field during summers 2014–2015 at 11 sites, nine of them consisting of warming experimental plots included in the International Tundra Experiment (ITEX). The study area protocols were assessed during 2014–2018 at 24 study areas across the Arctic. Our protocols provide comparable and easy to implement methods for assessing the intensity of invertebrate herbivory within ITEX plots and for characterizing vertebrate herbivore communities at larger spatial scales. We discuss methodological constraints and make recommendations for how these protocols can be used and how sampling effort can be optimized to obtain comparable estimates of herbivory, both at ITEX sites and at large landscape scales. The application of these protocols across the tundra biome will allow characterizing and comparing herbivore communities across tundra sites and at ecologically relevant spatial scales, providing an important step towards a better understanding of tundra ecosystem responses to large-scale environmental change

    Explanatory pluralism in the medical sciences: theory and practice

    Get PDF
    Explanatory pluralism is the view that the best form and level of explanation depends on the kind of question one seeks to answer by the explanation, and that in order to answer all questions in the best way possible, we need more than one form and level of explanation. In the first part of this article, we argue that explanatory pluralism holds for the medical sciences, at least in theory. However, in the second part of the article we show that medical research and practice is actually not fully and truly explanatory pluralist yet. Although the literature demonstrates a slowly growing interest in non-reductive explanations in medicine, the dominant approach in medicine is still methodologically reductionist. This implies that non-reductive explanations often do not get the attention they deserve. We argue that the field of medicine could benefit greatly by reconsidering its reductive tendencies and becoming fully and truly explanatory pluralist. Nonetheless, trying to achieve the right balance in the search for and application of reductive and non-reductive explanations will in any case be a difficult exercise

    Making subaltern shikaris: histories of the hunted in colonial central India

    Get PDF
    Academic histories of hunting or shikar in India have almost entirely focused on the sports hunting of British colonists and Indian royalty. This article attempts to balance this elite bias by focusing on the meaning of shikar in the construction of the Gond ‘tribal’ identity in late nineteenth and early twentieth-century colonial central India. Coining the term ‘subaltern shikaris’ to refer to the class of poor, rural hunters, typically ignored in this historiography, the article explores how the British managed to use hunting as a means of state penetration into central India’s forest interior, where they came to regard their Gond forest-dwelling subjects as essentially and eternally primitive hunting tribes. Subaltern shikaris were employed by elite sportsmen and were also paid to hunt in the colonial regime’s vermin eradication programme, which targeted tigers, wolves, bears and other species identified by the state as ‘dangerous beasts’. When offered economic incentives, forest dwellers usually willingly participated in new modes of hunting, even as impact on wildlife rapidly accelerated and became unsustainable. Yet as non-indigenous approaches to nature became normative, there was sometimes also resistance from Gond communities. As overkill accelerated, this led to exclusion of local peoples from natural resources, to their increasing incorporation into dominant political and economic systems, and to the eventual collapse of hunting as a livelihood. All of this raises the question: To what extent were subaltern subjects, like wildlife, ‘the hunted’ in colonial India

    The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies

    Get PDF
    The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80–300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised
    corecore