70 research outputs found

    Predictors of Wheezing in Prematurely Born Children

    Get PDF
    To examine the degree to which neonatal illness severity, post-neonatal health problems, child characteristics, parenting quality as measured by the HOME Inventory, and maternal characteristics related to the development of wheezing in prematurely born children over the first 27 months after term

    Late Permian palaeomagnetic data east and west of the Urals

    Full text link
    We studied Upper Permian redbeds from two areas, one between the Urals and the Volga River in the southeastern part of Baltica and the other in north Kazakhstan within the Ural-Mongol belt, which are about 900 km apart; a limited collection of Lower-Middle Triassic volcanics from north Kazakhstan was also studied. A high-temperature component that shows rectilinear decay to the origin was isolated from most samples of all three collections. For the Late Permian of north Kazakhstan, the area-mean direction of this component is D = 224.3°, I =−56.8°, k = 161, Α 95 = 2.7°, N = 18 sites, palaeopole at 53.4°N, 161.3°E; the fold test is positive. The Triassic result ( D = 55.9°, I =+69.1°, k = 208, Α 95 = 4.2°, N = 7 sites, pole at 57.0°N, 134.1°E) is confirmed by a positive reversal test. The corresponding palaeomagnetic poles from north Kazakhstan show good agreement with the APWP for Baltica, thus indicating no substantial motion between the two areas that are separated by the Urals. Our new mean Late Permian direction for SE Baltica ( D = 42.2°, I = 39.2°, k = 94, Α 95 = 3.5°, N = 17 sites; palaeopole at 45.6°N, 170.2°E) is confirmed as near-primary by a positive tilt test and the presence of dual-polarity directions. The corresponding pole also falls on the APWP of Baltica, but is far-sided with respect to the coeval reference poles, as the observed mean inclination is shallower than expected by 13°± 4°. In principle, lower-than-expected inclinations may be attributed to one or more of the following causes: relative tectonic displacements, quadrupole and octupole terms in the geomagnetic field, higher-order harmonics (incl. secular variation) of the same field, random scatter, non-removed overprints, or inclination error during remanence acquisition and/or diagenetic compaction. Our analysis shows that most mechanisms from the above list cannot explain the observed pattern, leaving as the most likely option that it must be accounted for by inclination shallowing. Comparison with selected coeval results from eastern Baltica (all within Russia) shows that all of them are biased in the same way. This implies that they cannot be used for analysis of geomagnetic field characteristics, such as non-dipole contributions, without a more adequate knowledge of the required correction for inclination shallowing.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71899/1/j.1365-246X.2008.03727.x.pd

    Mechanism of riboflavin uptake by cultured human retinal pigment epithelial ARPE-19 cells: possible regulation by an intracellular Ca(2+)–calmodulin-mediated pathway

    No full text
    In mammalian cells (including those of the ocular system), the water-soluble vitamin B(2) (riboflavin, RF) assumes an essential role in a variety of metabolic reactions and is critical for normal cellular functions, growth and development. Cells of the human retinal pigment epithelium (hRPE) play an important role in providing a sufficient supply of RF to the retina, but nothing is known about the mechanism of the vitamin uptake by these cells and its regulation. Our aim in the present study was to address this issue using the hRPE ARPE-19 cells as the retinal epithelial model. Our results show RF uptake in the hRPE to be: (1) energy and temperature dependent and occurring without metabolic alteration in the transported substrate, (2) pH but not Na(+) dependent, (3) saturable as a function of concentration with an apparent K(m) of 80 ± 14 nm, (4) trans-stimulated by unlabelled RF and its structural analogue lumiflavine, (5) cis-inhibited by the RF structural analogues lumiflavine and lumichrome but not by unrelated compounds, and (6) inhibited by the anion transport inhibitors 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS) and 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulphonic acid (SITS) as well as by the Na(+)–H(+) exchange inhibitor amiloride and the sulfhydryl group inhibitor p-chloromercuriphenylsulphonate (p-CMPS). Maintaining the hRPE cells in a RF-deficient medium led to a specific and significant up-regulation in RF uptake which was mediated via changes in the number and affinity of the RF uptake carriers. While modulating the activities of intracellular protein kinase A (PKA)-, protein kinase C (PKC)-, protein tyrosine kinase (PTK)-, and nitric oxide (NO)-mediated pathways were found to have no role in regulating RF uptake, a role for the Ca(2+)–calmodulin-mediated pathway was observed. These studies demonstrate for the first time the involvement of a specialized carrier-mediated mechanism for RF uptake by hRPE cells and show that the process is adaptively regulated in RF deficiency, and also appears to be under the regulation of an intracellular Ca(2+)–calmodulin-mediated pathway
    corecore