425 research outputs found

    PECULIARITIES OF CAUSATIVE VERBS COGNITIVE SCRIPT ORGANIZATION

    Get PDF
    В работе рассматривается структура когнитивного сценария глаголов защиты. Русские глаголы защиты содержат каузативный компонент в своей семантической структуре, чем и обусловлены особенности построения их когнитивного сценария.The paper deals with the structure of defence verbs cognitive script. Russian defence verbs contain causative component in their semantic structure, hence there are some peculiarities in the structure of their cognitive script

    Features of the Development of the Continuous Professional Training System in the Management Sphere at the Modern Stage (Example of the Republic of Belarus)

    Get PDF
    The article is devoted to the problem of improving the system of continuous professional training in the field of management. The article contains a review of the following actual features of training management personnel: continuity and incessancy, flexibility and variability, compactness and practical orientation, the on-person orientation of the educational process. Attention is focused on the need to develop “soft” skills and communication competencies of students, as well as the need to enhance cooperation with regional reserves of management personnel

    Atrial expression of the CCN1 and CCN2 proteins in chronic heart failure

    Get PDF
    Previous studies have reported the upregulation of CCN proteins early after acute heart injury. The aim of the present work was to evaluate the expression of the CCN1 and CCN2 proteins and their regulation by angiotensin II in the atrial myocardium of a chronically failing heart. Male adult mice were subjected to ligation of the left coronary artery to produce myocardial infarction (the MI group), and 16 of them were treated for 12 weeks with the AT1 receptor antagonist telmisartan (the MI-Tel group). Sham-operated mice served as controls. The expression of proteins was evaluated by immunohistochemistry 12 weeks after the operation. In shamoperated mice, stainings for CCN1 and CCN2 proteins were positive within atrial cardiomyocytes. CCN1-positive reaction revealed diffused cytoplasmic localization, while CCN2 was present mainly within the perinuclear cytoplasm. CCN1 was upregulated in the MI group, while CCN2 remained at basal level. Telmisartan prevented the upregulation of CCN1 and decreased CCN2 level. We compared the experimental data with the expression of CCN1 and CCN2 proteins in human right atrial appendages. We found an inverse, but not significant, relation between the level of either protein and the left ventricular ejection fraction. This suggests a similar atrial regulation of CCN1 and CCN2 expression also in humans. We conclude that in the murine atria, CCN1 and CCN2 proteins are expressed constitutively. In chronic heart failure, CCN proteins tend to be upregulated, which may be related to the action of angiotensin II

    CCN1 expression in interleukin-6 deficient mouse kidney in experimental model of heart failure

    Get PDF
    Chronic heart failure often leads to worsening of the renal function. Mediators of this process include inflammatory and neuroendocrine factors. CCN1 (Cyr 61), a member of growth factor-inducible immediate early genes, which modulates inflammation and fibrogenesis, is excreted with urine in the early phase of acute renal injury and may be involved in the pathogenesis of the cardiorenal syndrome. The aim of the study was to evaluate CCN1 protein abundance and localization in the kidney of IL-6-deficient C57BL/6J (IL-6 KO) mice and respective wild-type (WT) animals in basal conditions and in animals with chronic heart failure twelve weeks after myocardial infarction. Age- and sex-matched mice from both strains subjected to sham operation served as controls. One group of WT animals subjected to myocardial infarction was treated with antagonist of AT1 receptor telmisartan over 12 weeks. Abundance and localization of CCN1 protein in kidney were assessed with Western blotting and immunohistochemistry, respectively. In all groups the strongest immunohistochemical reaction for CCN1 was observed in distal convoluted tubules and in smaller arteries, however, the total expression of CCN1 protein was lower in IL-6 KO mice in comparison to WT animals. The main difference in CCN1 distribution between the examined genotypes was lack of reaction in internal renal medulla and very weak reaction in proximal convoluted tubules in IL-6 KO mice. Experimental heart failure only slightly attenuated the expression of CCN1 protein in the kidney of WT mice and had no effect in IL-6 KO mice. Although, blockade of AT1 receptor did not alter CCN1 protein expression in kidneys of WT mice after myocardial infarction, it significantly changed its CCN1 distribution in the renal tubular system. (Folia Histochemica et Cytobiologica 2013, Vol. 51, No. 1, 84–91

    Mapping the energy landscape of biomolecules using single molecule force correlation spectroscopy (FCS): Theory and applications

    Full text link
    In the current AFM experiments the distribution of unfolding times, P(t), is measured by applying a constant stretching force f_s from which the apparent unfolding rate is obtained. To describe the complexity of the underlying energy landscape requires additional probes that can incorporate the dynamics of tension propagation and relaxation of the polypeptide chain upon force quench. We introduce a theory of force correlation spectroscopy (FCS) to map the parameters of the energy landscape of proteins. In the FCS the joint distribution, P(T,t) of folding and unfolding times is constructed by repeated application of cycles of stretching at constant fs, separated by release periods T during which the force is quenched to f_q<f_s. During the release period, the protein can collapse to a manifold of compact states or refold. We show that P(T,t) can be used to resolve the kinetics of unfolding as well as formation of native contacts and to extract the parameters of the energy landscape using chain extension as the reaction coordinate and P(T,t). We illustrate the utility of the proposed formalism by analyzing simulations of unfolding-refolding trajectories of a coarse-grained protein S1 with beta-sheet architecture for several values of f_s, T and f_q=0. The simulations of stretch-relax trajectories are used to map many of the parameters that characterize the energy landscape of S1.Comment: 23 pages, 9 figures; accepted to Biophysical Journa

    Matter-enhanced transition probabilities in quantum field theory

    Full text link
    The relativistic quantum field theory is the unique theory that combines the relativity and quantum theory and is invariant under the Poincar\'e transformation. The ground state, vacuum, is singlet and one particle states are transformed as elements of irreducible representation of the group. The covariant one particles are momentum eigenstates expressed by plane waves and extended in space. Although the S-matrix defined with initial and final states of these states hold the symmetries and are applied to isolated states, out-going states for the amplitude of the event that they are detected at a finite-time interval T in experiments are expressed by microscopic states that they interact with, and are surrounded by matters in detectors and are not plane waves. These matter-induced effects modify the probabilities observed in realistic situations. The transition amplitudes and probabilities of the events are studied with the S-matrix, S[T]S[\text T], that satisfies the boundary condition at T. Using S[T]S[\text T], the finite-size corrections of the form of 1/T{1/\text T} are found. The corrections to the Fermi's golden rule become larger than the original values in some situations for light particles. They break Lorentz invariance even in high energy region of short de Broglie wave lengths.Comment: 96 pages, 23 figures, title changed, previous parts I and II (1209.5586) combined again, published version in Annals of Physic
    corecore