21 research outputs found

    The role of the Locus Coeruleus in pain and associated stress-related disorders

    Full text link
    The locus coeruleus (LC)-noradrenergic system is the main source of noradrenaline in the central nervous system and is involved intensively in modulating pain and stress-related disorders (e.g., major depressive disorder and anxiety) and in their comorbidity. However, the mechanisms involving the LC that underlie these effects have not been fully elucidated, in part owing to the technical difficulties inherent in exploring such a tiny nucleus. However, novel research tools are now available that have helped redefine the LC system, moving away from the traditional view of LC as a homogeneous structure that exerts a uniform influence on neural activity. Indeed, innovative techniques such as DREADDs (designer receptors exclusively activated by designer drugs) and optogenetics have demonstrated the functional heterogeneity of LC, and novel magnetic resonance imaging applications combined with pupillometry have opened the way to evaluate LC activity in vivo. This review aims to bring together the data available on the efferent activity of the LC-noradrenergic system in relation to pain and its comorbidity with anxiodepressive disorders. Acute pain triggers a robust LC stress response, producing spinal cord-mediated endogenous analgesia while promoting aversion, vigilance, and threat detection through its ascending efferents. However, this protective biological system fails in chronic pain, and LC activity produces pain facilitation, anxiety, increased aversive memory, and behavioral despair, acting at the medulla, prefrontal cortex, and amygdala levels. Thus, the activation/deactivation of specific LC projections contributes to different behavioral outcomes in the shift from acute to chronic pain

    The Role of the Locus Coeruleus in Pain and Associated Stress-Related Disorders

    Get PDF
    The locus coeruleus (LC)-noradrenergic system is the main source of noradrenaline in the central nervous system and is involved intensively in modulating pain and stress-related disorders (e.g., major depressive disorder and anxiety) and in their comorbidity. However, the mechanisms involving the LC that underlie these effects have not been fully elucidated, in part owing to the technical difficulties inherent in exploring such a tiny nucleus. However, novel research tools are now available that have helped redefine the LC system, moving away from the traditional view of LC as a homogeneous structure that exerts a uniform influence on neural activity. Indeed, innovative techniques such as DREADDs (designer receptors exclusively activated by designer drugs) and optogenetics have demonstrated the functional heterogeneity of LC, and novel magnetic resonance imaging applications combined with pupillometry have opened the way to evaluate LC activity in vivo. This review aims to bring together the data available on the efferent activity of the LC-noradrenergic system in relation to pain and its comorbidity with anxiodepressive disorders. Acute pain triggers a robust LC stress response, producing spinal cord–mediated endogenous analgesia while promoting aversion, vigilance, and threat detection through its ascending efferents. However, this protective biological system fails in chronic pain, and LC activity produces pain facilitation, anxiety, increased aversive memory, and behavioral despair, acting at the medulla, prefrontal cortex, and amygdala levels. Thus, the activation/deactivation of specific LC projections contributes to different behavioral outcomes in the shift from acute to chronic pain

    Pain and depression comorbidity causes asymmetric plasticity in the locus coeruleus neurons

    Get PDF
    There is strong comorbidity between chronic pain and depression, although the neural circuits and mechanisms underlying this association remain unclear. By combining immunohistochemistry, tracing studies and western blotting, with the use of different DREADDS (designer receptor exclusively activated by designer drugs) and behavioural approaches in a rat model of neuropathic pain (chronic constriction injury), we explore how this comorbidity arises. To this end, we evaluated the time-dependent plasticity of noradrenergic locus coeruleus neurons relative to the site of injury: ipsilateral (LCipsi) or contralateral (LCcontra) locus coeruleus at three different time points: short (2 days), mid (7 days) and long term (30-35 days from nerve injury). Nerve injury led to sensorial hypersensitivity from the onset of injury, whereas depressive-like behaviour was only evident following long-term pain. Global chemogenetic blockade of the LCipsi system alone increased short-term pain sensitivity while the blockade of the LCipsi or LCcontra relieved pain-induced depression. The asymmetric contribution of locus coeruleus modules was also evident as neuropathy develops. Hence, chemogenetic blockade of the LCipsi -> spinal cord projection, increased pain-related behaviours in the short term. However, this lateralized circuit is not universal as the bilateral chemogenetic inactivation of the locus coeruleus-rostral anterior cingulate cortex pathway or the intra-rostral anterior cingulate cortex antagonism of alpha1- and alpha2-adrenoreceptors reversed long-term pain-induced depression. Furthermore, chemogenetic locus coeruleus to spinal cord activation, mainly through LCipsi, reduced sensorial hypersensitivity irrespective of the time post-injury. Our results indicate that asymmetric activation of specific locus coeruleus modules promotes early restorative analgesia, as well as late depressive-like behaviour in chronic pain and depression comorbidity.Peer reviewe

    Pain and depression comorbidity causes asymmetric plasticity in the locus coeruleus neurons

    Get PDF
    There is strong comorbidity between chronic pain and depression, although the neural circuits and mechanisms underlying this association remain unclear. By combining immunohistochemistry, tracing studies and western blotting, with the use of different DREADDS (designer receptor exclusively activated by designer drugs) and behavioural approaches in a rat model of neuropathic pain (chronic constriction injury), we explore how this comorbidity arises. To this end, we evaluated the time-dependent plasticity of noradrenergic locus coeruleus neurons relative to the site of injury: ipsilateral (LCipsi) or contralateral (LCcontra) locus coeruleus at three different time points: short (2 days), mid (7 days) and long term (30-35 days from nerve injury). Nerve injury led to sensorial hypersensitivity from the onset of injury, whereas depressive-like behaviour was only evident following long-term pain. Global chemogenetic blockade of the LCipsi system alone increased short-term pain sensitivity while the blockade of the LCipsi or LCcontra relieved pain-induced depression. The asymmetric contribution of locus coeruleus modules was also evident as neuropathy develops. Hence, chemogenetic blockade of the LCipsi -> spinal cord projection, increased pain-related behaviours in the short term. However, this lateralized circuit is not universal as the bilateral chemogenetic inactivation of the locus coeruleus-rostral anterior cingulate cortex pathway or the intra-rostral anterior cingulate cortex antagonism of alpha1- and alpha2-adrenoreceptors reversed long-term pain-induced depression. Furthermore, chemogenetic locus coeruleus to spinal cord activation, mainly through LCipsi, reduced sensorial hypersensitivity irrespective of the time post-injury. Our results indicate that asymmetric activation of specific locus coeruleus modules promotes early restorative analgesia, as well as late depressive-like behaviour in chronic pain and depression comorbidity.This study was supported by grants cofinanced by the 'Fondo Europeo de Desarrollo Regional' (FEDER)-UE 'A way to build Europe' from the `Ministerio de Economia y Competitividad' (MINECO: RTI2018-099778-B-I00) and by the 'Ministerio de SaludInstituto de Salud Carlos III' (PI18/01691); the 'Consejeria de Salud de la Junta de Andalucia' (PI-0134-2018); the 'Programa Operativo de Andalucia FEDER, Iniciativa Territorial Integrada ITI 2014-2020 Consejeria Salud, Junta de Andalucia' (PI-0080-2017); the "Consejeri ' a de Transformacion Economica, Industria, Conocimiento y Universidades, Junta de Andalucia" (PEMP-00082020), Instituto de Investigacion e Innovacion en Ciencias Biomedicas de Cadiz (INiBICA LI19/06IN-CO22); the `Consejeri ' a de Economia, Innovacion, Ciencia y Empleo de la Junta de Andalucia' (CTS-510); the 'Centro de Investigacion Biomedica en Red de Salud Mental-CIBERSAM' (CB/07/09/0033) and the Academy of Finland (315043)

    Effect of tapentadol on neurons in the locus coeruleus

    Get PDF
    Tapentadol is a novel centrally acting drug that combines mu-opioid receptor (MOR) agonism and noradrenaline reuptake inhibition (NRI), producing analgesic effects in various painful conditions. We investigated the acute effects of tapentadol in the locus coeruleus (LC), a central nucleus regulated by the noradrenergic and opioid systems that is critical in pain modulation. In single-unit extracellular recordings of LC neurons from anaesthetized male SpragueeDawley rats, tapentadol clearly inhibited the spontaneous electrophysiological activity of LC neurons in a dose-dependent manner (ED50 ¼ 0.8 mg/kg). This inhibitory effect was reversed by RX821002 (an alpha2-adrenoceptor antagonist) and naloxone (a mu-opioid receptor antagonist) by 96.7% and 28.2%, respectively. Pretreatment with RX821002, Nethoxycarbonyl- 2-ethoxy-1-2-dihydroquinoline (EEDQ, an irreversible alpha2-adrenoceptor antagonist) or naloxone shifted the tapentadol doseeeffect curve to the right (ED50 ¼ 2.2 mg/kg, 2.0 mg/kg and 2.1 mg/kg, respectively). Furthermore, tapentadol inhibited the LC response to mechanical stimulation of the hindpaw in a dose-dependent manner. In summary, we demonstrate that acute administration of tapentadol inhibits LC neurons in vivo, mainly due to the activation of alpha2-adrenoceptors. These data suggest that both the noradrenergic and opioid systems participate in the inhibitory effect of tapentadol on LC neurons, albeit to different extents, which may account for its potent analgesic effect and mild opioidergic side-effects.This study was supported by grants from Grünenthal GmbH (OT2010/075); “Fondo de Investigación Sanitaria” (PI10/01221 and PI12/00915); CIBERSAM (G18); Junta de Andalucía, Consejería de Innovación, Ciencia y Empresa (CTS-510, CTS-4303 and CTS-7748); Cátedra Externa del Dolor Grünenthal-Universidad de Cádiz; FP7-PEOPLE-2010-RG (268377); FPU (AP2007-02397) and FPI (2011-145) fellowship

    Monoamines as Drug Targets in Chronic Pain: Focusing on Neuropathic Pain

    Get PDF
    Monoamines are involved in regulating the endogenous pain system and indeed, peripheral and central monoaminergic dysfunction has been demonstrated in certain types of pain, particularly in neuropathic pain. Accordingly, drugs that modulate the monaminergic system and that were originally designed to treat depression are now considered to be first line treatments for certain types of neuropathic pain (e.g., serotonin and noradrenaline (and also dopamine) reuptake inhibitors). The analgesia induced by these drugs seems to be mediated by inhibiting the reuptake of these monoamines, thereby reinforcing the descending inhibitory pain pathways. Hence, it is of particular interest to study the monoaminergic mechanisms involved in the development and maintenance of chronic pain. Other analgesic drugs may also be used in combination with monoamines to facilitate descending pain inhibition (e.g., gabapentinoids and opioids) and such combinations are often also used to alleviate certain types of chronic pain. By contrast, while NSAIDs are thought to influence the monoaminergic system, they just produce consistent analgesia in inflammatory pain. Thus, in this review we will provide preclinical and clinical evidence of the role of monoamines in the modulation of chronic pain, reviewing how this system is implicated in the analgesic mechanism of action of antidepressants, gabapentinoids, atypical opioids, NSAIDs and histaminergic drug

    The onset of treatment with the antidepressant desipramine is critical for the emotional consequences of neuropathic pain

    No full text
    International audienceAbstract Neuropathic pain is a chronic condition that is challenging to treat. It often produces considerable physical disability and emotional distress. Patients with neuropathic pain often experience depression and anxiety both of which are known to be temporally correlated with noradrenergic dysfunction in the locus coeruleus (LC) as pain becomes chronic. Antidepressants are the first-line drug therapy for neuropathic pain, and the LC represents a potential target for such therapy. In this study, we evaluated the efficacy of the tricyclic antidepressant desipramine (DMI, a noradrenaline reuptake inhibitor) in preventing or relieving the noradrenergic impairment induced by neuropathic pain. The treatment started before or after the onset of the anxiodepressive phenotype (“early or late treatment”) in adult rats subjected to chronic sciatic constriction. Electrophysiological and western blotting assays showed LC dysfunction (increased bursting activity, alpha2-adrenoceptor sensitivity, tyrosine hydroxylase, and noradrenaline transporter expression) in chronic constriction injury at long term. These noradrenergic changes were concomitant to the progression of anxiety and despair-like features. Desipramine induced efficient analgesia, and it counteracted the despair-like behavior in chronic constriction injury-DMI animals, reducing the burst rate and tyrosine hydroxylase expression. Surprisingly, “early” DMI treatment did not modify pain-induced anxiety, and it dampened pain aversion, although these phenomena were abolished when the treatment commenced after noradrenaline impairment had been established. Hence, DMI seems to produce different outcomes depending when the treatment commences, indicating that the balance between the benefits and adverse effects of DMI therapy may shift as neuropathy progresses

    Altered expression of vesicular glutamate transporter-2 and cleaved caspase-3 in the locus coeruleus of nerve-injured rats.

    Get PDF
    Neuropathic pain is a debilitating chronic condition provoked by a lesion in the nervous system and it induces functional alterations to the noradrenergic locus coeruleus (LC), affecting distinct dimensions of pain, like sensorial hypersensitivity, pain-induced depression, and anxiety. However, the neurobiological changes induced by nerve damage in the LC remain unclear. Here, we analyzed excitatory and inhibitory inputs to the LC, as well as the possible damage that noradrenergic neurons suffer after the induction of neuropathic pain through chronic constriction injury (CCI). Neuropathic pain was induced in male Sprague-Dawley rats, and the expression of the vesicular glutamate transporter 1 or 2 (VGLUT1 or VGLUT2), vesicular GABA transporter (VGAT), and cleaved caspase-3 (CC3) was analyzed by immunofluorescence 7 (CCI7d) or 28 days after the original lesion (CCI28d). While no significant differences in the density of VGLUT1 puncta were evident, CCI7d induced a significant increase in the perisomatic VGLUT2/VGAT ratio relative to Sham-operated and CCI28d animals. By contrast, when the entire region of LC is evaluated, there was a significant reduction in the density of VGLUT2 puncta in CCI28d animals, without changes in VGLUT2/VGAT ratio relative to the CCI7d animals. Additionally, changes in the noradrenergic soma size, and a lower density of mitochondria and lysosomes were evident in CCI28d animals. Interestingly, enhanced expression of the apoptotic marker CC3 was also evident in the CCI28d rats, mainly co-localizing with glial fibrillary acidic protein but not with any neuronal or noradrenergic marker. Overall, short-term pain appears to lead to an increase of markers of excitatory synapses in the perisomatic region of noradrenergic cells in the LC, an effect that is lost after long-term pain, which appears to activate apoptosis
    corecore