771 research outputs found

    Plasma etch Optimization of Silicon Dioxide with a Resist Mask

    Get PDF
    A dry etch process was developed and characterized to etch silicon dioxide (Si02). Characterization included increasing the etch rate o-f Si02 while decreasing the etch rate of a KTIB2O positive photoresist mask, which is used in RIT’s fabrication processes. Successful masking and etching of silicon dioxide occurred with 15 sccm CHF3 mixed with 6 sccm 02 at a chamber pressure of 750 - 800 mtorr and a power of 100 watts

    Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas

    Get PDF
    Phylogenetic asymmetry is common throughout the tree of life and results from contrasting patterns of speciation and extinction in the paired descendant lineages of ancestral nodes. On the depauperate side of a node, we find extant ´relict´ taxa that sit atop long, unbranched lineages. Here, we show that a tiny, pale green, inconspicuous and poorly known cicada in the genus Derotettix, endemic to degraded salt-plain habitats in arid regions of central Argentina, is a relict lineage that is sister to all other modern cicadas. Nuclear and mitochondrial phylogenies of cicadas inferred from probe-based genomic hybrid capture data of both target and non-target loci and a morphological cladogram support this hypothesis. We strengthen this conclusion with genomic data from one of the cicada nutritional bacterial endosymbionts, Sulcia, an ancient and obligate endosymbiont of the larger plant-sucking bugs (Auchenorrhyncha) and an important source of maternally inherited phylogenetic data. We establish Derotettiginae subfam. nov. as a new, monogeneric, fifth cicada subfamily, and compile existing and new data on the distribution, ecology and diet of Derotettix. Our consideration of the palaeoenvironmental literature and host-plant phylogenetics allows us to predict what might have led to the relict status of Derotettix over 100 Myr of habitat change in South America.Fil: Simon, Chris. University of Connecticut; Estados UnidosFil: Gordon, Eric R. L.. University of Connecticut; Estados UnidosFil: Moulds, M.S.. Australian Museum Research Institute; AustraliaFil: Cole, Jeffrey A.. Pasadena City College; Estados UnidosFil: Haji, Diler. University of Connecticut; Estados UnidosFil: Lemmon, Alan R.. Florida State University; Estados UnidosFil: Lemmon, Emily Moriarty. Florida State University; Estados UnidosFil: Kortyna, Michelle. Florida State University; Estados UnidosFil: Nazario, Katherine. University of Connecticut; Estados UnidosFil: Wade, Elizabeth J.. Curry College. Department of Natural Sciences and Mathematics; Estados Unidos. University of Connecticut; Estados UnidosFil: Meister, Russell C.. University of Connecticut; Estados UnidosFil: Goemans, Geert. University of Connecticut; Estados UnidosFil: Chiswell, Stephen M.. National Institute of Water and Atmospheric Research; Nueva ZelandaFil: Pessacq, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Centro de Investigación Esquel de Montaña y Estepa Patagónica. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigación Esquel de Montaña y Estepa Patagónica; ArgentinaFil: Veloso, Claudio. Universidad de Chile; ChileFil: McCutcheon, John P.. University of Montana; Estados UnidosFil: Lukasik, Piotr. University of Montana; Estados Unidos. Swedish Museum of Natural History. Department of Bioinformatics and Genetics; Sueci

    The plankton, aerosol, cloud, ocean ecosystem mission status, science, advances

    Get PDF
    The Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE) mission represents the National Aeronautics and Space Administration\u27s (NASA) next investment in satellite ocean color and the study of Earth\u27s ocean-atmosphere system, enabling new insights into oceanographic and atmospheric responses to Earth\u27s changing climate. PACE objectives include extending systematic cloud, aerosol, and ocean biological and biogeochemical data records, making essential ocean color measurements to further understand marine carbon cycles, food-web processes, and ecosystem responses to a changing climate, and improving knowledge of how aerosols influence ocean ecosystems and, conversely, how ocean ecosystems and photochemical processes affect the atmosphere. PACE objectives also encompass management of fisheries, large freshwater bodies, and air and water quality and reducing uncertainties in climate and radiative forcing models of the Earth system. PACE observations will provide information on radiative properties of land surfaces and characterization of the vegetation and soils that dominate their reflectance. The primary PACE instrument is a spectrometer that spans the ultraviolet to shortwave-infrared wavelengths, with a ground sample distance of 1 km at nadir. This payload is complemented by two multiangle polarimeters with spectral ranges that span the visible to near-infrared region. Scheduled for launch in late 2022 to early 2023, the PACE observatory will enable significant advances in the study of Earth\u27s biogeochemistry, carbon cycle, clouds, hydrosols, and aerosols in the ocean-atmosphere-land system. Here, we present an overview of the PACE mission, including its developmental history, science objectives, instrument payload, observatory characteristics, and data products

    Quantum Gas Mixtures and Dual-Species Atom Interferometry in Space

    Full text link
    The capability to reach ultracold atomic temperatures in compact instruments has recently been extended into space. Ultracold temperatures amplify quantum effects, while free-fall allows further cooling and longer interactions time with gravity - the final force without a quantum description. On Earth, these devices have produced macroscopic quantum phenomena such as Bose-Einstein condensation (BECs), superfluidity, and strongly interacting quantum gases. Quantum sensors interfering the superposition of two ultracold atomic isotopes have tested the Universality of Free Fall (UFF), a core tenet of Einstein's classical gravitational theory, at the 101210^{-12} level. In space, cooling the elements needed to explore the rich physics of strong interactions and preparing the multiple species required for quantum tests of the UFF has remained elusive. Here, utilizing upgraded capabilities of the multi-user Cold Atom Lab (CAL) instrument within the International Space Station (ISS), we report the first simultaneous production of a dual species Bose-Einstein condensate in space (formed from 87^{87}Rb and 41^{41}K), observation of interspecies interactions, as well as the production of 39^{39}K ultracold gases. We have further achieved the first space-borne demonstration of simultaneous atom interferometry with two atomic species (87^{87}Rb and 41^{41}K). These results are an important step towards quantum tests of UFF in space, and will allow scientists to investigate aspects of few-body physics, quantum chemistry, and fundamental physics in novel regimes without the perturbing asymmetry of gravity

    A Reconciled Estimate of Ice-Sheet Mass Balance

    Get PDF
    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods-especially in Greenland and West Antarctica-and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 plus or minus 49, +14 plus or minus 43, -65 plus or minus 26, and -20 plus or minus 14 gigatonnes year(sup 1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 plus or minus 0.20 millimeter year(sup 1) to the rate of global sea-level rise

    A Daphnane Diterpenoid Isolated from Wikstroemia polyantha Induces an Inflammatory Response and Modulates miRNA Activity

    Get PDF
    MicroRNAs (miRNAs) are endogenously expressed single-stranded ∼21–23 nucleotide RNAs that inhibit gene expression post-transcriptionally by binding imperfectly to elements usually within the 3′untranslated region (3′UTR) of mRNAs. Small interfering RNAs (siRNAs) mediate site-specific cleavage by binding with perfect complementarity to RNA. Here, a cell-based miRNA reporter system was developed to screen for compounds from marine and plant extracts that inhibit miRNA or siRNA activity. The daphnane diterpenoid genkwanine M (GENK) isolated from the plant Wikstroemia polyantha induces an early inflammatory response and can moderately inhibit miR-122 activity in the liver Huh-7 cell line. GENK does not alter miR-122 levels nor does it directly inhibit siRNA activity in an in vitro cleavage assay. Finally, we demonstrate that GENK can inhibit HCV infection in Huh-7 cells. In summary, the development of the cell-based miRNA sensor system should prove useful in identifying compounds that affect miRNA/siRNA activity

    Informed Conditioning on Clinical Covariates Increases Power in Case-Control Association Studies

    Get PDF
    Genetic case-control association studies often include data on clinical covariates, such as body mass index (BMI), smoking status, or age, that may modify the underlying genetic risk of case or control samples. For example, in type 2 diabetes, odds ratios for established variants estimated from low–BMI cases are larger than those estimated from high–BMI cases. An unanswered question is how to use this information to maximize statistical power in case-control studies that ascertain individuals on the basis of phenotype (case-control ascertainment) or phenotype and clinical covariates (case-control-covariate ascertainment). While current approaches improve power in studies with random ascertainment, they often lose power under case-control ascertainment and fail to capture available power increases under case-control-covariate ascertainment. We show that an informed conditioning approach, based on the liability threshold model with parameters informed by external epidemiological information, fully accounts for disease prevalence and non-random ascertainment of phenotype as well as covariates and provides a substantial increase in power while maintaining a properly controlled false-positive rate. Our method outperforms standard case-control association tests with or without covariates, tests of gene x covariate interaction, and previously proposed tests for dealing with covariates in ascertained data, with especially large improvements in the case of case-control-covariate ascertainment. We investigate empirical case-control studies of type 2 diabetes, prostate cancer, lung cancer, breast cancer, rheumatoid arthritis, age-related macular degeneration, and end-stage kidney disease over a total of 89,726 samples. In these datasets, informed conditioning outperforms logistic regression for 115 of the 157 known associated variants investigated (P-value = 1×10−9). The improvement varied across diseases with a 16% median increase in χ2 test statistics and a commensurate increase in power. This suggests that applying our method to existing and future association studies of these diseases may identify novel disease loci

    MicroRNA—implications for cancer

    Get PDF
    MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression post-transcriptionally. After the discovery of the first miRNA in the roundworm Caenorhabditis elegans, these short regulatory RNAs have been found to be an abundant class of RNAs in plants, animals, and DNA viruses. About 3% of human genes encode for miRNAs, and up to 30% of human protein coding genes may be regulated by miRNAs. MicroRNAs play a key role in diverse biological processes, including development, cell proliferation, differentiation, and apoptosis. Accordingly, altered miRNA expression is likely to contribute to human disease, including cancer. This review will summarize the emerging knowledge of the connections between human miRNA biology and different aspects of carcinogenesis. Various techniques available to investigate miRNAs will also be discussed

    The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle

    Get PDF
    Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies
    corecore